首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine the effects of in vitro embryo production on angiogenesis and morphometry of the bovine placenta during late gestation. Blastocysts produced in vivo were recovered from superovulated Holstein cows. Blastocysts produced in vitro were obtained after culture of in vitro-matured and -fertilized Holstein oocytes. Single blastocysts from each production system were transferred into heifers. Fetuses and placentas were recovered on Day 222 of gestation (in vivo, n=12; in vitro, n=12). Cotyledonary and caruncular tissues were obtained for quantification of vascular endothelial growth factor (VEGF) and peroxisome proliferator-activated receptor-gamma (PPARgamma) mRNA and protein. Tissue sections of placentomes were prepared for morphometric analysis. Fetuses and placentas were heavier from embryos produced in vitro than from embryos produced in vivo. More placentas from embryos produced in vitro had an excessive volume of placental fluid. There was no effect of treatment on the expression of mRNA for VEGF and PPARgamma in either cotyledonary or caruncular tissues. The expression of VEGF protein in cotyledons and caruncles as well as the expression of PPARgamma protein in cotyledons were not different between the in vitro and in vivo groups. However, caruncles from the in vitro group had increased expression of PPARgamma protein. The total surface area of endometrium was greater for the in vitro group compared with controls. In contrast, the percentage placentome surface area was decreased in the in vitro group. Fetal villi and binucleate cell volume densities were decreased in placentomes from embryos produced in vitro. The proportional tissue volume of blood vessels in the maternal caruncles was increased in the in vitro group. Furthermore, the ratios of blood vessel volume density-to-placentome surface area were increased in the in vitro group. In conclusion, these findings are consistent with the concept that compensatory mechanisms exist in the vascular beds of placentas from bovine embryos produced in vitro.  相似文献   

2.
The objective of this study was to compare the ultrastructure of bovine blastocysts produced in vivo or in vitro by using morphometric analysis. Blastocysts produced in vivo (multiple ovulations, MO) were obtained from superovulated Holstein cows. For blastocysts produced in vitro, cumulus-oocyte complexes aspirated from ovaries of Holstein cows were matured and fertilized in vitro. At 20 h postinsemination (hpi), zygotes were distributed into one of three culture media: 1) IVPS (in vitro produced with serum): TCM-199 + 10% estrous cow serum (ECS); 2) IVPSR (in vitro produced with serum restriction): TCM-199 + 1% BSA until 72 hpi, followed by TCM-199 + 10% ECS from 72 to 168 hpi; and 3) mSOF (modified synthetic oviductal fluid): mSOF + 0.6% BSA. At 168 hpi, six or seven grade 1 blastocysts from each of the four treatments (MO, IVPS, IVPSR, and mSOF) were fixed and prepared for transmission electron microscopy. Random micrographs of each blastocyst were used to determine the volume density of cellular components. Overall, as blastocysts progressed in development, the volume densities of cytoplasm and intercellular space decreased (P < 0.05) and the volume densities of mature mitochondria, nuclei, blastocoele, and apoptotic bodies increased (P < 0.05). Across treatments, the proportional volumes of nuclei and inclusion bodies were increased in inner cell mass cells compared with trophectoderm cells for mid- and expanded blastocysts. For blastocysts produced in vitro, the volume density of mitochondria was decreased (P < 0.05) as compared with that of blastocycts produced in vivo. The proportional volume of vacuoles was increased (P < 0.05) in blastocysts from the mSOF treatment as compared with blastocysts produced in vivo. For mid- and expanded blastocysts from all three in vitro treatments, the volume density of lipid increased (P < 0.05) and the volume density of nuclei decreased (P < 0.05) compared with those of blastocysts produced in vivo. In conclusion, blastocysts produced in vitro possessed deviations in volume densities of organelles associated with cellular metabolism as well as deviations associated with altered embryonic differentiation. However, the specific nature of these deviations varied with the type of culture conditions used for in vitro embryo production.  相似文献   

3.
The objective of this study was to compare the ultrastructure of bovine compact morulae produced in vivo or in vitro using morphometric analysis. Compact morulae produced in vivo were obtained from superovulated Holstein cows. Compact morulae produced in vitro were obtained from cumulus-oocyte complexes aspirated from ovaries of Holstein cows. The complexes were matured and fertilized in vitro. At 20 h postinsemination (hpi), zygotes were distributed into 1 of 3 culture media: 1) IVPS (in vitro produced with serum): TCM-199 + 10% estrous cow serum (ECS); 2) IVPSR (in vitro produced with serum restriction): TCM-199 + 1% BSA until 72 hpi followed by TCM-199 + 10% ECS from 72 to 144 hpi; 3) mSOF (modified synthetic oviductal fluid): SOF + 0.6% BSA. At 144 hpi, five grade 1 compact morulae from each of the four treatments were prepared for transmission electron microscopy. The volume density occupied by cellular components was determined by the point-count method using a sampling of seven to nine random micrographs from each compact morula. The volume density of lipid was greater (P < 0.05) in compact morulae from IVPS, IVPSR, and mSOF treatments compared with those produced in vivo. There was a reduced proportional volume of total mitochondria in compact morulae from the IVPS treatment compared with those produced in vivo (P < 0.05). For compact morulae from the IVPS culture treatment, the volume density of vacuoles was greater than that for compact morulae produced in vivo (P < 0.05). The cytoplasmic-to-nuclear ratio for compact morulae from the IVPS treatment was increased (P < 0.05) compared with the ratio for those produced in vivo. In conclusion, compact morulae produced in vitro differed ultrastructurally from those produced in vivo. Compact morulae produced in IVPS culture medium possessed the greatest deviations in cellular ultrastructure.  相似文献   

4.
In vitro systems are commonly used for the production of bovine embryos. Comparisons between in vivo and in vitro produced embryos illustrate that the morphology of preimplantation-stage embryos differ significantly, the survival of embryos and fetuses is decreased, the size distributions of the populations of conceptuses and fetuses are altered throughout gestation, and placental development is significantly changed. Taken together these findings indicate that exposure to some in vitro environments during the first 7 days of life can profoundly influence fetal and placental development in cattle. An understanding of how in vitro oocyte maturation, in vitro fertilization, and embryo culture systems influence both fetal and placental development should result in systems that consistently produce normal embryos, fetuses, and calves.  相似文献   

5.
This study was designed to characterize conceptus development based on pre- and postnatal measurements of in vivo- and in vitro-derived bovine pregnancies. In vivo-produced embryos were obtained after superovulation, whereas in vitro-produced embryos were derived from established procedures for bovine IVM, IVF and IVC. Blastocysts were transferred to recipients to obtain pregnancies of single (in vivo/singleton or in vitro/singleton groups) or twin fetuses (in vitro/twins group). Ultrasonographic examinations were performed weekly, from Day 30 of gestation through term. Videotaped images were digitized, and still-frames were used for the measurement of conceptus traits. Calves and fetal membranes (FM) were examined and measured upon delivery. In vitro-produced fetuses were smaller than in vivo controls (P < 0.05) during early pregnancy (Day 37 to Day 58), but in vitro/singletons presented significantly higher weights at birth than in vivo/control and in vitro/twin calves (P < 0.05). From late first trimester of pregnancy (Day 72 to Day 93), placentomes surrounding in vitro-derived singleton fetuses were longer and thinner than controls (P < 0.05). At term, the presence of giant cotyledons in the fetal membranes in the in vitro group was associated with a larger cotyledonary surface area in the fetal horn (P < 0.05). The biphasic growth pattern seen in in vitro-produced pregnancies was characterized by conceptus growth retardation during early pregnancy, followed by changes in the development of the placental tissue. Resulting high birth weights may be a consequence of aberrant placental development due to the disruption of the placental restraint on fetal growth toward the end of pregnancy.  相似文献   

6.
In vitro systems for oocyte maturation, fertilization and embryo culture [in vitro production (IVP)] have the potential for more wide-spread use in creative breeding programs for dairy and beef cattle. However, one negative consequence of both IVP and somatic cell nuclear transfer (SCNT) in cattle and other species is that embryos, fetuses, placentas, and offspring can differ significantly in morphology and developmental competence compared with those from embryos produced in vivo. Fetuses and placentas derived from IVP and SCNT embryos may fall within the normal range of development, may have obvious abnormalities such as increased fetal and placental weights, or may have subtle abnormalities such as aberrant development of fetal skeletal muscle, placental blood vessels, and altered metabolism. Failures in physiologic and/or genetic mechanisms essential for proper fetal growth and survival outside of the uterus contribute significantly to pregnancy and neonatal losses. Oversized fetuses are at increased risk of death during parturition and the adverse consequences of severe dystocia may compromise the dam. Collectively, these abnormalities have been referred to as 'large offspring syndrome' or 'large calf syndrome'. Abnormal phenotypes resulting from IVP and SCNT embryos are stochastic in occurrence and they have not been consistently linked to aberrant expression of single genes or specific pathophysiology. Thus, reliable methods of early diagnosis of the condition are not yet available. The objective of this paper is to examine abnormal development of fetuses and placentas resulting from embryos produced using in vitro systems. The term 'abnormal offspring syndrome (AOS)' is introduced and a classification system of developmental outcomes is proposed to facilitate research efforts on the mechanisms of the various abnormal phenotypes. We also discuss potential genetic and physiologic mechanisms that may contribute to abnormal phenotypes following transfer of IVP and SCNT embryos.  相似文献   

7.
8.
The objective of this study was to determine the effect of embryo production systems on the expression of insulin-like growth factor (IGF)-II mRNA in fetal bovine tissues at Day 70 of gestation (63 days after transfer). Oocytes aspirated from ovaries of Holstein cows were matured and fertilized in vitro. Zygotes were cultured in either tissue culture medium (TCM)-199 + 10% estrous cow serum (ECS; in vitro-produced with serum [IVPS]) or TCM-199 + 1% BSA (in vitro-produced with serum restriction [IVPSR]). At 72 h postinsemination, IVPSR embryos were transferred into fresh TCM-199 + 10% ECS whereas IVPS embryos had fresh medium replaced. All embryos were cultured for an additional 96 h. In vivo-produced embryos were harvested from superovulated Holstein cows (multiple ovulations [MO]). Grade 1 blastocysts from all groups were transferred singly into Angus heifers. At Day 70 of gestation, fetuses (n = 14, 13, and 11 for MO, IVPS, and IVPSR, respectively) were collected; liver and skeletal muscle samples were snap frozen, and whole-cell RNA (wcRNA) was extracted. Levels of IGF-II mRNA were determined by RNase protection assay and quantified relative to 18S rRNA (mean arbitrary units +/- SEM). WcRNA from adult and Day 90 fetal bovine liver were used as controls. Adult liver contained 9-fold less IGF-II mRNA than liver from Day 90 fetuses (P < 0.05). Fetal livers of males originating from IVPS and IVPSR groups possessed approximately 2-fold greater levels of mRNA for IGF-II than those from MO males (0.25 +/- 0.07, 0.33 +/- 0.04, and 0.14 +/- 0.03, respectively; P < 0.05). Levels of mRNA for IGF-II tended to be lower (P = 0.07) in skeletal muscle of fetuses originating from the IVPSR group (0.043 +/- 0.005) compared to MO controls (0.070 +/- 0.008). In conclusion, at Day 70 of gestation, fetuses originating from in vitro production systems possessed altered levels of IGF-II mRNA in both liver and skeletal muscle.  相似文献   

9.
It is generally accepted that culturing embryos in groups or with somatic cells improves both the yield and quality of the blastocysts obtained. The aims of this study were 1) to compare the yield and quality of the embryos obtained after culture in several number conditions and in several culture systems and 2) to assess the effect of co-culture started at various stages of embryo development. Under cell-free culture conditions (modified synthetic oviduct fluid [mSOF] supplemented with 10% fetal calf serum [FCS] 48 h post insemination, the rate of Day 10 blastocysts was lower when embryos were cultured in small groups (1 to 6 per drop) than in large groups (4 versus 23% ; P < 0.01). There was no group effect when embryos were co-cultured either with Buffalo rat liver (BRL) cells in TCM 199, or in a culture system allowing the progressive development of cumulus cells in mSOF, even if co-culture started at 66 or 114 h post insemination. However, embryos cultured singly had lower cell numbers than embryos cultured in large groups when co-culture started at 114 h post insemination. This suggests that 1) somatic cells improve the development of singly cultured bovine embryos up to the blastocyst stage after the 9-16 cell stage; 2) co-culture affects blastocyst cell number of singly cultured embryos by acting roughly between the 5-8 and the 9-16 cell stage; and 3) cooperation between embryos could replace the effect of co-culture either on the yield of blastocysts or on blastocyst cell number. Blastocysts appeared significantly earlier in co-culture with cumulus cells in mSOF than in co-culture with BRL cells in TCM 199 (detection of the blastocysts: 7.3 +/- 0.1 d post insemination with cumulus cells versus 8.1 +/- 0.1 d with BRL cells; P < 0.001) and had a significant higher number of cells (143 +/- 9 versus 85 +/- 11; P < 0.001). This system thus seems suitable for the culture of small numbers of embryos resulting from in vitro maturation and fertilization of oocytes from individual donor cows.  相似文献   

10.
To further investigate the role of insulin during preimplantation embryo development, we compared the effects of insulin on the development of mouse and bovine preimplantation embryos and on cell proliferation during culture in vitro in simplex media. The influence of insulin on the development of mouse zygotes was determined during cultivation in mSOF medium, alone or supplemented with glucose. Similarly, the effects of insulin on the bovine preimplantation embryo development were studied in mSOF medium. The addition of insulin into mSOF medium enhanced significantly the number of cells per mouse blastocyst. Moreover, when mSOF medium was supplemented with insulin and 0.2 mmol x l(-1) glucose, the percentage of hatched blastocysts and the mean cell number of mouse blastocysts were significantly higher. Insulin had no significant effect on the development of bovine embryos, produced by in vitro fertilization of in vitro matured oocytes. Neither the rates of developing embryos nor the mean number of cells in blastocysts were different in comparison with control embryos. Our results suggest that the in vitro development of mouse embryos could be enhanced by the addition of insulin to the culture medium and is further improved by the addition of glucose. In contrast to this our results indicate that insulin has no detectable beneficial effect on the preimplantation development of bovine embryos in mSOF medium.  相似文献   

11.
The cloning of cattle by somatic cell nuclear transfer (NT) is associated with a high incidence of abnormal placentation, excessive fluid accumulation in the fetal sacs (hydrops syndrome), and fetal overgrowth. Fetal and placental development was investigated at Day 50, during placentome formation; at Day 100, when placentation was completed; and at Day 150, when the hydrops syndrome frequently develops. The NT fetuses were compared with contemporary half-siblings generated from in vitro-produced embryos or by artificial insemination (AI). Fetal cotyledon formation and vascularization of the chorioallantoic membranes was initiated normally in NT conceptuses, but fewer cotyledons successfully formed placentomes. By Day 100, the mean number of placentomes was significantly lower in surviving NT fetuses. Only those with normal placentome numbers were represented in surviving NT pregnancies at Day 150. The mean total caruncle tissue weight of the placentomes was significantly higher in the surviving NT groups at Days 100 and 150, irrespective of the placentome numbers, indicating that increased NT placental weight was caused by excessive uterine tissue growth. By Day 100, NT fetuses exhibited growth deregulation, and those that survived to Day 150 were 17% heavier than contemporary AI controls. Placentome, liver, and kidney overgrowth accompanied the hydrops syndrome at Day 150. The NT fetal overgrowth was not a consequence of in vitro embryo culture and showed no correlation with placental overgrowth. However, in vitro culture and incomplete reprogramming of the donor genome are epigenetic effects that may override genetic traits and contribute to the greater variability in placental and fetal development in the NT group compared with AI half-siblings.  相似文献   

12.
13.
通过胞质内注射法将牛和山羊胎儿耳朵成纤维细胞分别注入去核牛卵母细胞中构建同种胚胎和异种胚胎。采用mCR2aa和mSOF分别培养,然后在mSOF中按不同培养时间添加8mg/mLBSA或者10?S,培养前3d和培养3d后添加的补充物质及次序为:(1)BSA FBS;(2)BSA BSA;(3)FBS BSA;(4)FBS FBS。根据培养胚胎的卵裂率、8/16-cell发育率、囊胚发育率及囊胚细胞数筛选出最好的培养方法。结果:(1)mSOF中培养同种胚胎和异种胚胎的卵裂率,8/16-cell发育率以及囊胚发育率均明显高于在mCR2aa中的培养结果(P<0.05)。(2)添加BSA FBS组的mSOF培养胚胎的卵裂率、8/16-cell发育率、囊胚发育率和囊胚细胞数同种依次为79.8%±7.1%、49.7%±3.5%、21.5%±1.8%和115.2±4.3,异种依次为40.1%±6.3%、29.2%±2.0%、13.4%±2.1%和100.1±3.0,均明显高于其他培养组(P<0.05)。结论:山羊-牛异种克隆胚胎可以用优化的牛胚胎培养体系进行培养。同种胚胎和异种胚胎的最佳培养方法均为前3d用mSOF BSA培养液,3d后用mSOF FBS培养液。  相似文献   

14.
The gross morphological appearance of ovine placentomes is known to alter in response to adverse intrauterine conditions that increase fetal cortisol exposure. The direct effects of fetal cortisol on the placentome morphology, however, remain unknown, nor is the functional significance of the different placentome types clear. The present study investigated the gross morphology of ovine placentomes in relation to placental nutrient delivery to sheep fetuses during late gestation and after experimental manipulation of the fetal cortisol concentration. As fetal cortisol levels rose naturally toward term, a significant decrease was observed in the proportion of the D-type placentomes that had the hemophagous zone everted over the bulk of the placentomal tissue. When the prepartum cortisol surge was prevented by fetal adrenalectomy, there were proportionately more everted C- and D-type placentomes and fewer A-type placentomes with the hemophagous zone inverted into the placentome compared with those of intact fetuses at term. Raising cortisol concentrations by infusion before term reduced the incidence of D-type placentomes and lowered the proportion of individually tagged placentomes that became more everted during the 10- to 15-day period between tagging and delivery. Cortisol, therefore, appears to prevent hemophagous zone eversion in ovine placentomes during late gestation. The distribution of placentome types appeared to have no effect on the net rates of placental delivery of glucose and oxygen to the fetus under normal conditions. When fetal cortisol levels were raised by exogenous infusion, however, placental delivery of glucose, but not oxygen, to the fetus, measured as umbilical uptake, was reduced to a greater extent in fetuses with a higher proportion of C- and D-type placentomes. The gross morphology of the ovine placentomes is, therefore, determined, at least in part, by the fetal cortisol concentration and may influence placental nutrient transfer when fetal cortisol concentrations are high during late gestation. These findings have important implications for the placental control of fetal growth and development, particularly during adverse intrauterine conditions.  相似文献   

15.
The ratio of male/female embryos may be modified by environmental factors such as maternal diet in vivo and the composition of embryo culture media in vitro. We have used amino acid profiling, a noninvasive marker of developmental potential to compare the effect of sex on the metabolism of bovine blastocysts conceived in vivo and in vitro. Blastocysts were incubated individually for 24 hr in a close‐to‐physiological mixture of amino acids and the depletion or appearance of 18 amino acids measured using HPLC. Blastocysts were then sexed by PCR. Amino acid depletion by in vitro‐produced blastocysts and expanded blastocysts was higher than in embryos conceived in vivo (P = 0.02). When cultured in vitro, female embryos exhibited increased depletion of arginine, glutamate, and methionine and appearance of glycine, while male embryos displayed increased depletion of phenylalanine, tyrosine, and valine. Overall, in vitro‐produced blastocysts exhibited sex‐specific differences in metabolic profiles of 7 out of 18 amino acids; in vivo‐produced, in 2 out of 18. These differences had disappeared by the expanded blastocyst stages. We have also shown that amino acid metabolism can predict the ability of bovine zygotes to develop to the blastocyst stage, providing “proof of principle” for the use of this technology in clinical IVF to select single embryos for transfer and thereby avoid the problem of multiple births. Mol. Reprod. Dev. 77: 285–296, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
17.
The aim of this study was to examine the effects of co-culture with Vero cells during the in vitro maturation (IVM) and three culture media, B2+5% fetal calf serum (FCS) on Vero cells, synthetic oviduct fluid (SOF)+5% FCS, and SOF+20 gL(-1) bovine serum albumin (BSA), on the developmental competence of the embryos and their ability to survive vitrification/warming. We also tested the effect of morphological quality and the age of the embryo on its sensitivity to vitrification. The IVM system neither affects the embryo development up to Day 7 nor survival rates after vitrification. The culture of embryos in SOF+FCS and in Vero cells+B2 allowed obtaining more Day 6 and Day 7 blastocysts, and a higher % of Day 7 blastocysts vitrified than culture in SOF+BSA. Contrarily, on Day 8, more blastocysts were vitrified in SOF+BSA than in SOF+FCS. Blastocysts quality affected development after vitrification/warming, and Day 7 embryos showed higher survival rates than their Day 8 counterparts. Day 7 blastocysts produced in Vero cells or in SOF+BSA survived at higher rates than those produced in SOF+FCS at 24 and 48 h after warming. Embryo culture with BSA allows obtaining hatching rates after vitrification/warming higher than those obtained after co-culture with Vero cells in B2 and FCS. Moreover, this system provides hatching rates from Day 8 blastocysts comparable to those obtained on Day 7 in Vero cells. Further studies, including embryo transfer to recipients, are needed to clarify factors affecting the freezability of in vitro produced bovine embryos.  相似文献   

18.
19.
The production of cloned animals is, at present, an inefficient process. This study focused on the fetal losses that occur between Days 30-90 of gestation. Fetal and placental characteristics were studied from Days 30-90 of gestation using transrectal ultrasonography, maternal pregnancy specific protein b (PSPb) levels, and postslaughter collection of fetal tissue. Pregnancy rates at Day 30 were similar for recipient cows carrying nuclear transfer (NT) and control embryos (45% [54/120] vs. 58% [11/19]), although multiple NT embryos were often transferred into recipients. From Days 30-90, 82% of NT fetuses died, whereas all control pregnancies remained viable. Crown-rump (CR) length was less in those fetuses that were destined to die before Day 90, but no significant difference was found between the CR lengths of NT and control fetuses that survived to Day 90. Maternal PSPb levels at Days 30 and 50 of gestation were not predictive of fetal survival to Day 90. The placentas of six cloned and four control (in vivo or in vitro fertilized) bovine pregnancies were compared between Days 35 and 60 of gestation. Two cloned placentas showed rudimentary development, as indicated by flat, cuboidal trophoblastic epithelium and reduced vascularization, whereas two others possessed a reduced number of barely discernable cotyledonary areas. The remaining two cloned placentas were similar to the controls, although one contained hemorrhagic cotyledons. Poor viability of cloned fetuses during Days 35-60 was associated with either rudimentary or marginal chorioallantoic development. Our findings suggest that future research should focus on factors that promote placental and vascular growth and on fetomaternal interactions that promote placental attachment and villous formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号