首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trophic-niche differentiation is often cited as a main factor in structuring zooplankton assemblages, although field evidence for this is rarely presented. The study was based on a survey of 29 Pyrenean lakes with altitudes ranging between 1,875 and 2,990 m carried out during July and August 2000. Because of the oligotrophic nature of these lakes, we aimed to confirm that food partitioning is a major factor in shaping zooplankton assemblages. We analysed the amino acid composition of six cladocera and seven copepod species. A discriminant analysis showed that each species could be distinguished according to its amino acid composition. A negative relationship between amino acid differentiation and co-occurrence among the cladocera and cyclopoid copepod was observed. In contrast, calanoids did not show any relationship and were characterised by a high amino acid differentiation between species. As the differences in the amino acid composition among zooplankton species indicate distinct food sources, the relationship found indicates that trophic-niche differentiation plays a key role in determining the assemblage of these zooplankton communities. Therefore exploitative competition, either at present or in the past by driving co-evolutionary histories, has been a significant factor in structuring the cladocera and cyclopoid communities in these oligotrophic lakes.  相似文献   

3.
1. North Halfmoon Lake and Lofty Lake (Alberta, Canada) were chosen for whole-lake liming experiments as a new restoration technology to enhance calcite precipitation and reduce eutrophication. During a 3-year study (1991–93) the relationships between zooplankton and phytoplankton were assessed, together with the effects of lime additions. 2. Zooplankton communities were numerically dominated by rotifers, while the major contribution to biomass was due to large filter-feeding Daphnia during the first half of the summer season. In Lofty Lake, cladocerans made up to 93% of biomass, whereas in North Halfmoon Lake both cladocerans and calanoids were strongly represented. 3. Total zooplankton and cladoceran biomasses were inversely correlated with chlorophyll a (chl a). The same relationship was found between large Daphnia (≥ 1 mm) and chl a. These relationships suggest that the decline in Daphnia may have been caused by an increase in cyanobacteria biomass during bloom events. 4. There were minor changes in rotifer populations after liming; however, these changes have been caused by natural year-to-year variation rather than liming. In general, cladocerans showed an increase in body size and population biomass when pre and post-treatment data were compared by means of ANCOVA. Statistical analysis showed that there were more cladocerans per unit of chl a after liming; however, further research is needed to relate these patterns unambiguously to the application of lime as a restoration technology.  相似文献   

4.
  1. The North American Great Plains contains thousands of lakes that vary in salinity from freshwater to hypersaline. Paleolimnological studies show that salinity levels in these lakes are tightly linked with climate, and current projections point to a more arid future in the region due to natural and anthropogenic climate change, potentially influencing lake salinity.
  2. Many zooplankton species are sensitive to changes in salinity, and their position near the base of the aquatic food web makes it important to understand how they might respond to increasing salinity levels. Zooplankton communities in lakes with rising salinity levels may exhibit changes in structure, including a shift toward more salinity-tolerant species and a reduction in abundance, species richness, and diversity. However, it is possible that dispersal of zooplankton among lakes could mitigate such community changes when migrant populations replace sensitive zooplankton with those that are locally adapted to higher salinities.
  3. To test if dispersal could reduce salinity-induced changes in zooplankton communities, we ran a field enclosure experiment at a freshwater lake in southern Saskatchewan where we manipulated salinity levels and zooplankton dispersal. We evaluated how salinity and dispersal influenced species identities and relative abundances (community structure) using multivariate statistics and comparing taxonomic and functional compositions among the different treatments (richness, diversity, and evenness).
  4. We found that increasing salinity levels in our enclosures above that in our study lake resulted in lower zooplankton abundances and species richness levels, primarily due to the loss of cladoceran species. However, patterns in our multivariate analyses suggested that cladocerans were maintained in enclosures with salinity levels of 2.5 and 5.0 g/L when those enclosures received immigration from nearby lakes.
  5. In contrast, our univariate analyses failed to find evidence that immigration affected community structure (richness, diversity, evenness). The lack of significant statistical differences could suggest that dispersal does not have an effect, or it may have been a problem with statistical power, as a power analysis suggested that fairly large effect sizes would have been required to achieve statistical significance.
  6. Based on our results, we were unable to reach a definitive conclusion on the role that dispersal might play in buffering zooplankton communities against salinity-driven changes. However, our study provides two important insights for planning future work. First, our power analyses indicated that more replication may be needed given the variability among our experimental enclosures. Second, the patterns in our multivariate analyses suggested that cladocerans could be maintained in lakes undergoing salinity increases if they receive immigration from surrounding lakes with higher salinities. Future work examining how inter- and intraspecific salinity tolerance varies across lakes with a gradient of salinities would be helpful for understanding the role that dispersal might play in buffering against salinity-driven losses of cladoceran zooplankton.
  相似文献   

5.
苏州工业园区湖泊后生浮游动物群落结构及影响因子   总被引:2,自引:0,他引:2  
苏州工业园区地处长江流域下游,随着城市化进程的不断推进,园区水生态系统结构与功能的稳定面临严峻考验。浮游动物作为水生态系统的重要组成部分,探究其群落结构的形成机制对生物多样性保护及生态系统健康发展具有重要意义。为深入了解苏州工业园区五个主要湖泊后生浮游动物群落结构的动态变化及影响因子,于2018年7月至2019年6月进行4次调查。研究共检出后生浮游动物112种(轮虫65种、枝角类29种、桡足类18种),其中优势种12种(轮虫10种、枝角类和桡足类各1种)。Jaccard相似性分析表明,湖泊间后生浮游动物物种组成整体处于中等相似水平。后生浮游动物密度呈现出显著的季节和湖泊差异,而生物量、Shannon-Wiener多样性指数、Pielou均匀度指数以及Margalef丰富度指数仅存在显著的季节差异。聚类分析结果表明,夏季和秋季后生浮游动物群落结构最为相似。RDA分析表明,水温、溶解氧和pH是影响园区湖泊后生浮游动物群落结构的主要环境因子。Pearson相关性分析表明,湖泊面积与后生浮游动物群落结构无显著相关关系,样点近岸距离与生物量具有显著的正相关关系。基于水质评价标准和物种多样性指数可知,园区湖泊水质整体处于轻-中度污染水平。研究表明苏州工业园区五大湖泊后生浮游动物群落结构表现出同质化趋势;季节变化、环境因子以及样点近岸距离是调控群落结构形成的主要因素。  相似文献   

6.
杨威  孙雨琛  张婷婷  刘琪  黄悦  葛茜  邓道贵 《生态学报》2020,40(14):4874-4882
2017年3月到2018年2月研究了临涣湖浮游甲壳动物群落结构的季节变化。临涣湖共记录浮游甲壳动物13种,其中枝角类8属8种,桡足类5属5种。短尾秀体溞(Diaphanosoma brachyurum)、广布中剑水蚤(Mesocyclops leuckarti)和象鼻溞(Bosmina sp.)等小型富营养种类是温暖季节的优势种,而近邻剑水蚤(Cyclops vicinus)是冬季的优势种。盔形溞(Daphnia galeata)等大型种类仅在少数月份中被观察到。临涣湖浮游甲壳动物的年平均密度和生物量分别为28.3个/L和0.33 mg/L。营养状态指数(TSIM)的年平均值为62.6。浮游甲壳动物的Shannon指数、Pielou指数和Simpson指数的年平均值分别为0.86、0.74和0.49,且3种多样性指数均具有显著的季节差异。营养盐水平、营养状态指数和物种多样性指数均表明,临涣湖水体处于富营养化状态。冗余分析结果表明,水温、总磷浓度和叶绿素a浓度是影响临涣湖浮游甲壳动物群落结构变化的上行效应因子。鲢、鳙鱼的捕食压力是临涣湖浮游甲壳动物群落结构小型化的下...  相似文献   

7.
Distribution, diurnal variability, aggregation of zooplankton in the littoral zone of lakes and effect of various macrophyte species on the structure of its community are considered. It is shown that the horizontal migrations of zooplankton, both direct and reverse ones, are caused mainly by the pressure of fish. The effect of predacious zooplankton is less important and is directed mainly at small-sized species. The intensity of horizontal migrations of zooplankton decreases with depth, while the effect of shore avoidance is observed for the large-sized zooplankton species and is caused not only by the pressure of fish but also by other factors, most likely abiotic. The problem of interaction between macrophytes and zooplankton cannot be reduced to the role of macrophytes as a refuge. Allelopathic properties of macrophytes, competitive relations between separate zooplankton species in macrophyte thickets, as well as the effect of predacious invertebrates associated with macrophytes on zooplankton remain unclear. The role of macrophytes as a factor causing changes in hydrodynamic processes in the littoral regions of lakes is also unknown.  相似文献   

8.
Asynchronous vertical migrations of calanoid copepods Arctodiaptomus salinus were studied in two stratified lakes in the south of Siberia using the method of two-section enclosures. It was found that the presence of a pronounced thermocline and a depth maximum of phytoplankton (Lake Shira) contributes to the appearance of intensive individual migrations of copepods between areas of the epi- and hypolimnion.  相似文献   

9.
10.
Floodplain lakes along the rivers Lower Rhine and Meuse in TheNetherlands can be categorized according to their hydrologyand geomorphology. The impact of hydrology on the summer planktoncommunity composition in 100 floodplain lakes was studied bymultivariate analyses (TWINSPAN, FLEXCLUS, DCA) of relativeabundance data of plankton. The phyto- and zooplankton communitycomposition in floodplain lakes is clearly related to hydrology,relevant nutritional resources and habitat characteristics,mainly via input of N and P from the eutrophic main channelsduring floods. The plankton species richness was related tothe complexity of habitats formed by the presence of aquaticvegetation. There was a good agreement between the ecologicaland the environmental characterization of site groups. Cyanobacteria,Chlorophyta and filter-feeding zooplankton taxa associated withopen water are characteristic for floodplain lakes with a longannual flood duration, low Si/N and Si/P ratios, and a poorlydeveloped aquatic vegetation. Bacillariophyceae and scrapingzooplankton taxa associated with aquatic macrophytes are characteristicfor floodplain lakes with a short annual flood duration, highSi/N and Si/P ratios, and a well-developed aquatic vegetation.It is concluded that the restoration of connections betweenrarely flooded lakes and the highly eutrophic main channelsof the Lower Rhine and Meuse will result in hypertrophic conditionsand a reduced plankton diversity in these lakes.  相似文献   

11.
Duggan  Ian C.  Özkundakci  Deniz  David  Bruno O. 《Aquatic Ecology》2021,55(4):1127-1142

Data collected on zooplankton community composition over longer time periods (>?10 years) are rare. We examined among-lake spatial and temporal trends of zooplankton communities from a monitoring programme undertaken in the Waikato region, New Zealand. A total of 39 lakes were sampled over a period of 12 years, between 2007 and 2019, with varying degrees of temporal effort. We focussed particularly on eight lakes, considered here as ‘long-term lakes’, where samples were collected with greater regularity (including 5 with 12 years of data). Among lakes, suspended sediment concentrations and indicators of lake trophic state were inferred to be important in determining the zooplankton distributions; as this region is dominated by shallow lakes, the relative importance of suspended sediments was high. Among the long-term lakes, the greatest dissimilarities in zooplankton community composition among years were in Lake Waahi, where the Australian Boeckella symmetrica was first detected in 2012. That is, the greatest temporal changes to zooplankton composition during the study period were due to the invasion by non-indigenous species, rather than changes in trophic state or other environmental variables; non-native species commonly dominated the individual counts of species through much of 2014 and 2015, with most samples since 2016 being again dominated by native species. Following this lake, the largest and shallowest lakes in the dataset—Whangape and Waikare—exhibited the greatest variability in community composition among years.

  相似文献   

12.
Zooplankton community composition can be related to natural environmental factors such as lake morphology, lake landscape position, and water chemistry as well as anthropogenic factors such as agricultural and urban land-use. We hypothesized that within-lake factors, such as water chemistry, lake morphology, and human land-use would each be related to zooplankton community structure, but that watershed land-use would be the strongest correlate in southeast Wisconsin lakes. Zooplankton samples, collected every 3 months over a year, from 29 lakes were used to determine how lake and watershed morphology, water quality, and land-use were related to zooplankton community structure in the heavily developed Southeast Wisconsin Till Plain Ecoregion. Forward selection and a variation partitioning procedure were used to determine relative and shared contributions of each suite of variables in predicting zooplankton community structure. Redundancy analysis was used to characterize dominant gradients in pelagic zooplankton communities and related environmental factors and land-use. The major correlates of community structure included summer phosphorus, lake depth and surface area and urban and natural land. Variation partitioning illustrated that phosphorus alone accounts for the greatest part (12%) of community structure. Urban land-uses (residential, commercial and paved land) and lake morphology partially explain zooplankton community variation through combined effects with phosphorus. Small cladocerans and Skistodiaptomus pallidus were associated with higher phosphorus, shallow depth and higher urban land-use, while Daphnia pulicaria dominates in deep lakes with lower phosphorus and less urban land-use. This study contributes to the understanding of factors affecting zooplankton community structure in a largely human developed region and illustrates the importance of eutrophication in structuring zooplankton community composition.  相似文献   

13.
Zooplankton community structure can be affected by within-lakeand by watershed ecological factors, including water chemistry(related to landscape position), lake morphology and human activityin the watershed. We hypothesized that all three groups of driverswould be correlated with zooplankton species richness and speciescomposition for lakes in northern Wisconsin. Data collectedfrom 52 lakes allowed us to explore the relationship of zooplanktoncommunity structure with ecological drivers. We found that crustaceanzooplankton species richness was not significantly correlatedwith independent environmental variables derived from PCA ordination,nor with measures of community structure based on NMS ordination.However, species composition was correlated with environmentalgradients. Larger zooplankton species (Daphnia pulicaria, Epischuralacustris, Skistodiaptomus oregonensis, Mesocyclops americanus)occurred in large and deep lakes low in the landscape gradient,whereas the smaller species Ceriodaphnia dubia, Daphnia retrocurvaand Leptodiaptomus minutus tended to occur high in the landscape.This shift in species composition was correlated with increasedconductivity, primary productivity and the hypolimnetic refugescharacteristic of larger deeper lakes lower in the landscape.Riparian housing development and littoral zone habitat (measuredas building density and by abundance of logs in littoral zones)were not correlated with zooplankton community structure. Inthese relatively low-impact lakes, natural drivers are stillthe most significant determinants of zooplankton community structure.  相似文献   

14.
Horizontal distributions of zooplankton were investigated in two kettle lakes in southern Ontario. In Tory Lake a set of random samples at 1 m depth showed that Skistodiaptomus oregonensis and copepod nauplii were overdispersed (patchy). In Lake St. George a 20 point grid sampled at each of 0.5, 2, 4, and 6 m showed that Polyarthra spp., Keratella cochlearis, Asplanchna spp., Daphnia galeata mendotae, Bosmina longirostris, Eubosmina coregoni and copepod nauplii were all patchy in terms of both vertical and horizontal distributions. Contour diagrams showed that the patches tended to be comprised of unique groups of species. This was confirmed by principal components analysis which showed that Polyarthra spp. and K. cochlearis occurred together, that D. g. mendotae was found in a unispecies patch and that B. longirostris and E. coregoni were together. None of the zooplankton patches correlated with chlorophyll a measurements. A literature review suggests that there are four basic types of patches occurring in lakes and that there are at least 16 identifiable forces which might cause these distributions. The patch types are: I) large scale (> 1 km diameter), II) small scale, caused by wind-induced water movement, III) Langmuir circulation aggregations and IV) swarms, potentially caused by biotic factors.  相似文献   

15.
Percentage of rotifers in spring zooplankton in lakes of different trophy   总被引:2,自引:2,他引:0  
Radwan  Stanisław  Popiołek  Barbara 《Hydrobiologia》1989,186(1):235-238
Studies carried out on 8 lakes in the czna-Wodawa Lakeland of eastern Poland indicated that the qualitative and quantitative structure of zooplankton was clearly correlated with the lake trophy state. In the spring zooplankton of lakes affected by gradual natural eutrophication were dominated by rotifers. In the zooplankton of lakes strongly affected by human activities, Cladocera dominated. With an increase in lake trophy there was an increase in the number of species that were indicators of eutrophy and a decrease in the number of indicators of mesotrophy. The total number of species in individual lakes tended to increase with an increase in trophy.  相似文献   

16.
Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 μm) vertical tows taken at each lake's deepest location were analyzed. Oxygen–temperature–pH–specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.  相似文献   

17.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

18.
19.
Seasonal dynamics in elemental composition [carbon (C), nitrogenand phosphorus (P)] of seston and zooplankton were studied overseveral years in three hypereutrophic Dutch lakes with persistentdominance and high biomass of cyanobacteria. In all three lakes,there was a strong pattern with decreased P-content and increasedC:P ratio in seston (<150 µm) coinciding with the increasein water temperature. The seston C:P ratios (at:at) were morethan doubled with the rising temperature, i.e. from 200 (at:at)in winter to 500 in summer. Sestonic C:P ratios increased overthe growing season, suggesting that seasonal dynamics amongautotrophs with high P-uptake in winter and support of subsequentphytoplankton growth by consumption of internal cellular P (P-quota)was the main cause of low sestonic P contents in late summer.This could, however, occur in concert with a physiologicallydriven decrease in cell-specific P at higher temperatures insummer. In contrast, the annual variation of C:P ratios of thezooplankton fraction was only 10% of that of seston. The variationsof C:P ratios of the zooplankton were, nevertheless, stronglycorrelated with those of seston. For most of the summer, sestonC:P ratios were far above the threshold ratio for P-limitationin Daphnia and other P-demanding species. This will pose furtherconstraints on growth performance of Daphnia in these lakes,thus adding to the fish predation pressure and the poor foodquality of cyanobacteria per se. The low grazing pressure causesa high biomass of low-quality autotrophs, promoting a stablestate with low trophic transfer efficiency.  相似文献   

20.
While the importance of terrestrial linkages to aquatic ecosystems is well appreciated, the degree of terrestrial support of aquatic consumers remains debated. Estimates of terrestrial contributions to lake zooplankton have omitted a key food source, phytoplankton produced below the mixed layer. We used carbon and nitrogen stable isotope data from 25 Pacific Northwest lakes to assess the relative importance of particulate organic matter (POM) from the mixed layer, below the mixed layer and terrestrial detritus to zooplankton. Zooplankton and deep POM were depleted in 13C relative to mixed layer POM in lakes that can support deep primary production. A Bayesian stable isotope mixing model estimated that terrestrial detritus contributed <5% to zooplankton production, and confirms the role of lake optical and thermal properties; deep POM accounted for up to 80% of zooplankton production in the clearest lakes. These results suggest terrestrial support of lake zooplankton production is trivial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号