首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human nucleotide excision repair processes carcinogen-DNA adducts at highly variable rates, even at adjacent sites along individual genes. Here, we identify conformational determinants of fast or slow repair by testing excision of N2-guanine adducts formed by benzo[a]pyrene diol epoxide (BPDE), a potent and ubiquitous mutagen that induces mainly G x C-->T x A transversions and frameshift deletions. We found that human nucleotide excision repair processes the predominant (+)-trans-BPDE-N2-dG adduct 15 times less efficiently than a standard acetylaminofluorene-C8-dG lesion in the same sequence. No difference was observed between (+)-trans- and (-)-trans-BPDE-N2-dG, but excision was enhanced about 10-fold by changing the adduct configurations to either (+)-cis- or (-)-cis-BPDE-N2-dG. Conversely, excision of (+)-cis- and (-)-cis- but not (+)-trans-BPDE-N2-dG was reduced about 10-fold when the complementary cytosine was replaced by adenine, and excision of these BPDE lesions was essentially abolished when the complementary deoxyribonucleotide was missing. Thus, a set of chemically identical BPDE adducts yielded a greater-than-100-fold range of repair rates, demonstrating that nucleotide excision repair activity is entirely dictated by local DNA conformation. In particular, this unique comparison between structurally highly defined substrates shows that fast excision of BPDE-N2-dG lesions is correlated with displacement of both the modified guanine and its partner base in the complementary strand from their normal intrahelical positions. The very slow excision of carcinogen-DNA adducts located opposite deletion sites reveals a cellular strategy that minimizes the fixation of frameshifts after mutagenic translesion synthesis.  相似文献   

2.
An SV40-based shuttle vector, pZ189, carrying a bacterial suppressor tRNA target gene (supF), was treated with radiolabeled polycyclic aromatic carcinogens and the number of covalently bound residues (adducts) per plasmid was determined. The plasmids were transfected into human cell line 293, allowed to replicate, and the progeny plasmids rescued and assayed for the frequency of supF mutants. The agents tested were the 7,8-diol-9,10-epoxide of benzo(a)pyrene (BPDE) and 1-nitrosopyrene (1-NOP). With each agent there was a linear increase in the frequency of supF mutants as a function of the number of DNA adducts formed, reaching frequencies 15 to 25 times higher than the background frequency of 1.4 x 10(-4). When compared on the basis of adducts formed per plasmid BPDE, which forms its principal DNA adduct at the N2 position of guanine, was approximately four times more mutagenic than 1-NOP, which binds principally at the C8 position of guanine. This difference in mutagenic effectiveness may reflect intrinsic differences in the nature of the adducts and their location in the DNA molecule, but it could also reflect a difference in the rate of removal of particular adducts by nucleotide excision repair since the 293 host cell line excised BPDE-induced adducts from genomic DNA at least three times slower than 1-NOP-induced adducts. Agarose gel electrophoresis and DNA sequencing analysis of mutants derived from untreated plasmids showed that the majority (70%) involved deletions, insertions, or altered gel mobility (gross rearrangements). In contrast, the majority of those derived from carcinogen-treated plasmids were base substitutions. DNA sequencing of 86 unequivocally independent mutants derived from BPDE-treated plasmid and 60 from 1-NOP-treated plasmid indicated that 70% to 80% contained a single base substitution, 5%-10% had two base substitutions, and 4%-10% had small insertions or deletions (one or two basepairs). The majority (83%) of the base substitutions in mutants from BPDE- or 1-NOP-treated plasmid were transversions, mainly G.C----T.A. Each carcinogen produced its own spectrum of mutations.  相似文献   

3.
An SV40-based shuttle vector, pZ189, carrying a bacterial suppressor tRNA target gene (supF) was treated with radiolabeled polycyclic aromatic carcinogens and the number of covalently bound residues (adducts) per plasmid was determined. The plasmids were transfected into the human embryonic kidney cell line 293 and allowed to replicate. The progeny plasmids were rescued and assayed for the frequency of supF mutants by being used to transform indicator bacteria carrying an amber mutation in the beta-galactosidase gene. The agents tested were the 7,8-diol-9,10-epoxide of benzo[a]pyrene (BPDE); 1-nitrosopyrene (1-NOP); N-acetoxy-2-acetylaminofluorene (N-AcO-AAF); and its trifluoro-derivative (N-AcO-F3-AAF) which yields deacetylated adducts. With each agent there was a linear increase in the frequency of supF mutants as a function of the number of DNA adducts formed, reaching frequencies as high as 20 x 10(-4) to 40 x 10(-4), with a background frequency of 1.4 x 10(-4). When compared on the basis of adducts formed per plasmid, BPDE, which forms its principal DNA adduct at the N2 position of guanine, was approximately 4 times more mutagenic than 1-NOP, N-AcO-AAF and N-AcO-F3-AAF, which bind principally or exclusively to the C8 position of guanine. This difference in mutagenic effectiveness may reflect intrinsic differences in the nature of the adducts and their location in the DNA molecule. It could also reflect a difference in the rate of removal of particular adducts by nucleotide excision repair since the 293 host cell line excised BPDE-induced adducts from genomic DNA at least 3 times slower than 1-NOP-induced adducts. Agarose gel electrophoresis and DNA sequencing analysis of 35 mutants derived from untreated plasmids showed that the majority (70%) involved deletions, insertions, or altered gel mobility (gross rearrangements). In contrast, the majority of those derived from carcinogen-treated plasmids were base-substitutions. DNA-sequencing of 86 unequivocally independent mutants derived from BPDE-treated plasmids and 60 from 1-NOP-treated plasmids indicated that 60% and 80%, respectively, contained a single base-substitution, 5-10% had two base-substitutions, and 4-10% had small insertions or deletions (one or two base pairs).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots.  相似文献   

5.
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.  相似文献   

6.
Wang D  Hara R  Singh G  Sancar A  Lippard SJ 《Biochemistry》2003,42(22):6747-6753
Nucleotide excision repair is a major cellular defense mechanism against the toxic effects of the anticancer drug cisplatin and other platinum-based chemotherapeutic agents. In this study, mononucleosomes were prepared containing either a site-specific cis-diammineplatinum(II)-DNA intrastrand d(GpG) or a d(GpTpG) cross-link. The ability of the histone core to modulate the excision of these defined platinum adducts was investigated as a model for exploring the cellular response to platinum-DNA adducts in chromatin. Comparison of the extent of repair by mammalian cell extracts of free and nucleosomal DNA containing the same platinum-DNA adduct reveals that the nucleosome significantly inhibits nucleotide excision repair. With the GTG-Pt DNA substrate, the nucleosome inhibits excision to about 10% of the level observed with free DNA, whereas with the less efficient GG-Pt DNA substrate the nucleosome inhibited excision to about 30% of the level observed with free DNA. The effects of post-translational modification of histones on excision of platinum damage from nucleosomes were investigated by comparing native and recombinant nucleosomes containing the same intrastrand d(GpTpG) cross-link. Excision from native nucleosomal DNA is approximately 2-fold higher than the level observed with recombinant material. This result reveals that post-translational modification of histones can modulate nucleotide excision repair from damaged chromatin. The in vitro system established in this study will facilitate the investigation of platinum-DNA damage by DNA repair processes and help elucidate the role of specific post-translational modification in NER of platinum-DNA adducts at the physiologically relevant nucleosome level.  相似文献   

7.
8.
The effect of genetic polymorphism of DNA repair enzyme on the DNA adduct levels was evaluated in this study. We explored the relationship between polymorphism in the nucleotide excision repair enzyme XPD and DNA adduct levels in lymphocytes. Lymphocyte DNA adducts were measured by a 32  相似文献   

9.
The effect of genetic polymorphism of DNA repair enzyme on the DNA adduct levels was evaluated in this study. We explored the relationship between polymorphism in the nucleotide excision repair enzyme XPD and DNA adduct levels in lymphocytes. Lymphocyte DNA adducts were measured by a 32  相似文献   

10.
The effects of secondary structure on DNA modification by (+/-)-7 beta, 9 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene [(+/-)BPDE I] were investigated. No differences in the total extent of (+/-) BPDE I binding to double- and single-stranded calf thymus DNA were found. High-performance liquid chromatography (LC) of the nucleoside adducts obtained from hydrolysates of native and denatured calf thymus, as well as from superhelical and linear plasmid DNA, indicated that in all cases the major adduct (60--80% of total adducts) was formed by reaction of the (+) enantiomer of BPDE I with the N-2 position of dG residues in the DNA. A minor adduct formed from the reaction of the (-) enantiomer with dG residues was also detected and was present in greater amounts in denautred DNA than in native DNA. Small amounts of BPDE I--dA and BPDE I--dC adducts were also detected in both the single- and double-stranded DNAs. Restriction enzyme analysis of BPDE I modified SV40 and phage lambda DNA provided evidence that the modification of DNA by this carcinogen is fairly random with respect to nucleotide sequence. Partial hydrolysis of modified plasmid DNA by the single-strand-specific S1 nuclease and LC analysis of the nucleoside adducts in the digested and undigested fractions of the DNA revealed no preferential excision by the S1 nuclease of the different BPDE I--deoxynucleoside adducts. Functional changes in BPDE I modified DNA were demonstrated. With increasing extents of modification, there was a decrease in the ability of plasmid DNA to transfect a receptive Escherichia coli strain to antibiotic resistance.  相似文献   

11.
Zou Y  Shell SM  Utzat CD  Luo C  Yang Z  Geacintov NE  Basu AK 《Biochemistry》2003,42(43):12654-12661
DNA damage recognition of nucleotide excision repair (NER) in Escherichia coli is achieved by at least two steps. In the first step, a helical distortion is recognized, which leads to a strand opening at the lesion site. The second step involves the recognition of the type of chemical modification in the single-stranded region of DNA during the processing of the lesions by UvrABC. In the current work, by comparing the efficiencies of UvrABC incision of several types of different DNA adducts, we show that the size and position of the strand opening are dependent on the type of DNA adducts. Optimal incision efficiency for the C8-guanine adducts of 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF) was observed in a bubble of three mismatched nucleotides, whereas the same for C8-guanine adduct of 1-nitropyrene and N(2)-guanine adducts of benzo[a]pyrene diol epoxide (BPDE) was noted in a bubble of six mismatched nucleotides. This suggests that the size of the aromatic ring system of the adduct might influence the extent and number of bases associated with the opened strand region catalyzed by UvrABC. We also showed that the incision efficiency of the AF or AAF adduct was affected by the neighboring DNA sequence context, which, in turn, was the result of differential binding of UvrA to the substrates. The sequence context effect on both incision and binding disappeared when a bubble structure of three bases was introduced at the adduct site. We therefore propose that these effects relate to the initial step of damage recognition of DNA structural distortion. The structure-function relationships in the recognition of the DNA lesions, based on our results, have been discussed.  相似文献   

12.
Nucleotide excision repair plays a crucial role in removing many types of DNA adducts formed by UV light and chemical carcinogens. We have examined the interactions of Escherichia coli UvrABC nuclease proteins with three site-specific C8 guanine adducts formed by the carcinogens 2-aminofluorene (AF), N-acetyl-2-acetylaminofluorene (AAF) and 1-nitropyrene (1-NP) in a 50mer oligonucleotide. Similar to the AF and AAF adducts, the 1-NP-induced DNA adduct contains an aminopyrene (AP) moiety covalently linked to the C8 position of guanine. The dissociation constants for UvrA binding to AF–, AAF– and AP–DNA adducts, determined by gel mobility shift assay, are 33 ± 9, 8 ± 2 and 23 ± 9 nM, respectively, indicating that the AAF adduct is recognized much more efficiently than the other two. Incision by UvrABC nuclease showed that AAF–DNA was cleaved ~2-fold more efficiently than AF– or AP–DNA (AAF > AF ≈ AP), even though AP has the largest molecular size in this group. However, an opened DNA structure of six bases around the adduct increased the incision efficiency for AF–DNA (but not for AP–DNA), making it equivalent to that for AAF–DNA. These results are consistent with a model in which DNA damage recognition by the E.coli nucleotide excision repair system consists of two sequential steps. It includes recognition of helical distortion in duplex DNA followed by recognition of the type of nucleotide chemical modification in a single-stranded region. The difference in incision efficiency between AF– and AAF–DNA adducts in normal DNA sequence, therefore, is a consequence of their difference in inducing structural distortions in DNA. The results of this study are discussed in the light of NMR solution structures of these DNA adducts.  相似文献   

13.
14.
Tretyakova N  Matter B  Jones R  Shallop A 《Biochemistry》2002,41(30):9535-9544
The mutagenicity of a prominent tobacco carcinogen, benzo[a]pyrene (B[a]P), is believed to result from chemical reactions between its diol epoxide metabolite, (+)-anti-7r,8t-dihydroxy-c9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and DNA, producing promutagenic lesions, e.g., (+)-trans-anti-7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (N(2)-BPDE-dG). Previous studies used the DNA repair enzyme UvrABC endonuclease in combination with ligation-mediated PCR (LMPCR) to demonstrate an increased reactivity of BPDE toward guanine nucleobases within codons 157, 248, and 273 of the p53 tumor suppressor gene (Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. Science 274, 430-432). These sites are also "hot spots" for mutations observed in lung tumors of smokers, suggesting an involvement of B[a]P in the initiation of lung cancer. However, the LMPCR approach relies on the ability of the repair enzyme to excise BPDE-induced lesions, and thus the slowly repaired lesions may escape detection. Furthermore, BPDE-DNA adduct structure and stereochemistry cannot be determined. In the present work, we performed a direct quantitative analysis of N(2)-BPDE-dG originating from specific guanine nucleobases within p53- and K-ras-derived DNA sequences by using a stable isotope labeling-mass spectrometry approach recently developed in our laboratory. (15)N-labeled dG was placed at defined positions within DNA sequences derived from the K-ras proto-oncogene and p53 tumor suppressor gene, the two genes most frequently mutated in smoking-induced lung cancer. (15)N-labeled DNA was annealed to the complementary strands, followed by BPDE treatment and liquid chromatography-electrospray ionization tandem mass spectrometry analysis (HPLC-ESI-MS/MS) of N(2)-BPDE-dG lesions. The extent of adduct formation at (15)N-labeled guanine was determined directly from the HPLC-ESI-MS/MS peak area ratios of (15)N-N(2)-BPDE-dG and N(2)-BPDE-dG. BPDE-induced guanine adducts were produced nonrandomly along K-ras and p53 gene-derived DNA sequences, with over 5-fold differences in adduct formation depending on sequence context. N(2)-BPDE-dG yield was enhanced by the presence of 5-Me substituent at the cytosine base-paired with the target guanine nucleobase, an endogenous DNA modification characteristic for CpG dinucleotides within the p53 gene. In the K-ras-derived DNA sequence, the majority of N(2)-BPDE-dG adducts originated from the first position of the codon 12 (GGT), consistent with the large number of G --> T transversions observed at this nucleotide in smoking-induced lung cancer. On the contrary, the pattern of N(2)-BPDE-dG formation within the p53 exon 5 sequences did not correlate with the mutational spectrum in lung cancer, suggesting that factors other than N(2)-BPDE-dG formation are responsible for these mutations. The stable isotope labeling HPLC-ESI-MS/MS approach described in this work is universally applicable to studies of modifications to isolated DNA by other carcinogens and alkylating drugs.  相似文献   

15.
We developed a competition assay to compare, in a quantitative manner, the ability of human nucleotide excision repair (NER) to recognise structurally different forms of DNA damage. This assay uses a NER substrate consisting of M13 double-stranded DNA with a single and uniquely located acetylaminofluorene (AAF) adduct, and measures the efficiency by which multiply damaged plasmid DNA competes for excision repair of the site-directed modification. To validate this assay, we tested competitor DNA containing defined numbers of either AAF adducts or UV radiation products. In both cases, repair of the site-directed NER substrate was inhibited in a damage-specific and dose-dependent manner. We then exploited this competition assay to determine the susceptibility of bulky adozelesin-DNA adducts to human NER.  相似文献   

16.
The cytotoxic and mutagenic effect of aflatoxin B1-dichloride (AFB1-Cl2), a direct-acting carcinogen which is a model for the proposed ultimate reactive metabolite of AFB1 (the 2,3-epoxide), was compared in normal, repair-proficient, diploid human fibroblasts and in complementation Group A xeroderma pigmentosum cells (XP12BE) which are virtually incapable of excision repair of DNA damage induced by ultraviolet radiation, the 7,8-diol-9,10-epoxide of benzo[alpha]pyrene, and several reactive aromatic amide derivatives. The XP cells were significantly more sensitive than normal to the cytotoxic and mutagenic effects of AFB1-Cl2, not only as a function of concentration administered but also of the number of AFB1-Cl2 residues initially bound to DNA. Cytotoxicity was determined from survival of colony-forming ability; resistance to 6-thioguanine was the genetic marker used for mutagenicity. We compared the rate of loss of AFB1-Cl2-DNA adducts from cells treated and held in the non-dividing state (confluent) over several days, as well as their ability to recover from the potentially mutagenic and/or cytotoxic effects of the agent. AFB1-Cl2 residues were lost from both strains of cells and both exhibited a gradual increase in survival. However, the rate of loss of adducts from the DNA in the normal cells was more rapid than in XP cells and they exhibited recovery from higher doses of AFB1-Cl2 than XP cells. The major primary DNA adduct formed in the human cells and in isolated DNA was a chemically unstable guanine derivative which could undergo a change in structure with time posttreatment to form a more stable secondary adduct. The cytotoxic effect of AFB1-Cl2 was highly correlated with the presence of either of these guanine adducts. Evidence suggests that the primary adduct is an N7-guanine adduct. The kinetics of the loss of this guanine and its transformation into the more stable secondary adduct resembled that reported recently for the major primary DNA adduct formed by the reaction of AFB1 at the N-7 position of guanine in the DNA of normal and XP cells and its transformation into the putative AFB1-ring opened triamino pyrimidyl structure.  相似文献   

17.
Braithwaite E  Wu X  Wang Z 《Mutation research》1999,424(1-2):207-219
DNA is frequently damaged by endogenous agents inside the cells. Some exogenous agents such as polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment and may thus contribute to the 'background' DNA damage in humans. DNA lesions are normally removed by various repair mechanisms. The major repair mechanisms for various DNA lesions are summarized. In contrast to the extensively studied repair mechanisms, much less is known about the relative repair efficiencies of various DNA lesions. Since DNA repair is a crucial defense against carcinogenesis, it may constitute an important factor affecting the carcinogenicity of DNA damaging agents. We have adopted a human cell-free system for measuring relative DNA repair efficiencies based on the concept of repair competition between acetylaminofluorene adducts and other DNA lesions of interest. Using this in vitro system, we determined the relative repair efficiencies of PAH adducts induced by: anti-(+/-)-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE), anti-(+/-)-benz[a]anthracene-trans-3,4-dihydrodiol-1,2-epoxide (BADE-I), anti-(+/-)-benz[a]anthracene-trans-8,9-dihydrodiol-10, 11-epoxide (BADE-II), anti-(+/-)-benzo[b]fluoranthene-trans-9, 10-dihydrodiol-11,12-epoxide (BFDE), anti-(+/-)-chrysene-trans-1, 2-dihydrodiol-3,4-epoxide (CDE), and anti-(+/-)-dibenzo[a, l]pyrene-trans-11,12-dihydrodiol-13,14-epoxide (DBPDE). While damage by BPDE, DBPDE, CDE, and BFDE were repaired by nucleotide excision repair as efficiently as AAF adducts, the repair of BADE-I and BADE-II adducts were significantly slower in human cell extracts. Damage by DBPDE at 3 microM in vitro yielded approximately 5-fold higher DNA adducts than BPDE as determined by quantitative PCR. This potent DNA reactivity may account in part for the potent carcinogenicity of dibenzo[a,l]pyrene. The correlation of these results to the carcinogenic properties of the PAH compounds is discussed. Furthermore, we show that NER plays a role in AP site repair in vivo in the eukaryotic model organism yeast.  相似文献   

18.
1-Nitropyrene has been shown in bacterial assays to be the principal mutagenic agent in diesel emission particulates. It has also been shown to be mutagenic in human fibroblasts and carcinogenic in animals. To investigate the kinds of mutations induced by this carcinogen and compare them with those induced by a structurally related carcinogen, (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetra-hydrobenzo [a]pyrene (BPDE) (J.-L. Yang, V. M. Maher, and J. J. McCormick, Proc. Natl. Acad. Sci. USA 84:3787-3791, 1987), we treated a shuttle vector with tritiated 1-nitrosopyrene (1-NOP), a carcinogenic mutagenic intermediate metabolite of 1-nitropyrene which forms the same DNA adduct as the parent compound, and introduced the plasmids into a human embryonic kidney cell line, 293, for DNA replication to take place. The treated plasmid, pZ189, carrying a bacterial suppressor tRNA target gene, supF, was allowed 48 h to replicate in the human cells. Progeny plasmids were then rescued, purified, and introduced into bacteria carrying an amber mutation in the beta-galactosidase gene in order to detect those carrying mutations in the supF gene. The frequency of mutants increased in direct proportion to the number of DNA-1-NOP adducts formed per plasmid. At the highest level of adduct formation tested, the frequency of supF mutants was 26 times higher than the background frequency of 1.4 X 10(-4). DNA sequencing of 60 unequivocally independent mutant derived from 1-NOP-treated plasmids indicated that 80% contained a single base substitution, 5% had two base substitutions, 4% had small insertions or deletions (1 or 2 base pairs), and 11% showed a deletion or insertion of 4 or more base pairs. Sequence data from 25 supF mutants derived from untreated plasmids showed that 64% contained deletions of 4 or more base pairs. The majority (83%) of the base substitution in mutants from 1-NOP-treated plasmids were transversions, with 73% of these being G . C --> T . A. This is very similar to what we found previously in this system, using BPDE, but each carcinogen produced its own spectrum of mutations. Of the five hot spots for base substitution mutations produced in the supF gene with 1-NOP, two were the same as seen with BPDE-treated plasmids. However, the three other hot spots were cold spots for BPDE-treated plasmids. Conversely, four of the other five hot spots seen with BPDE-treated plasmids were cold spots for 1-NOP-treated plasmids. Comparison of the two carcinogens for the frequency of supF mutants induced per DNA adduct showed that 1-NOP-induced adducts were 3.8 times less than BPDE adducts. However, the 293 cell excised 1-NOP-induced adducts faster than BPDE adducts.  相似文献   

19.
Adozelesin is a synthetic analog of the antitumor antibiotic CC-1065, which alkylates the N3 of adenine in the minor groove in a sequence-selective manner. Since the cytotoxic potency of a DNA alkylating agent can be modulated by DNA excision repair system, we investigated whether nucleotide excision repair (NER) and base excision repair (BER) enzymes are able to excise the bulky DNA adduct induced by adozelesin. The UvrABC nuclease and 3-methyladenine-DNA glycosylase, that exhibit a broad spectrum of substrate specificity, were selected as typical NER and BER enzymes, respectively. The adozelesin-DNA adduct was first formed in the radiolabeled restriction DNA fragment and its excision by purified repair enzymes was monitored on a DNA sequencing gel. The treatment of the DNA adduct with a purified UvrABC nuclease and sequencing gel analysis of cleaved DNA showed that UvrABC nuclease was able to incise the adozelesin adduct. The incision site corresponded to the general nuclease incision site. Excision of this adduct by 3-methyladenine-DNA glycosylases was determined following the treatment of the DNA adduct with a homogeneous recombinant bacterial, rat and human 3-methyladenine-DNA glycosylases. Abasic sites generated by DNA glycosyalses were cleaved by the associated lyase activity of the E. coli formamidopyrimidine-DNA glycosylase (Fpg). Resolution of cleaved DNA on a sequencing gel showed that the DNA glycosylase from different sources could not release the N3-adenine adducts. A cytotoxicity assay using E. coli repair mutant strains showed that E. coli mutant strains defective in the uvrA gene were more sensitive to cell killing by adozelesin than E. coli mutant strain defective in the alkA gene or the wild type. These results suggest that the NER pathway seems to be the major excision repair system in protecting cells from the cytotoxicity of adozelesin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号