首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chuck CP  Chow HF  Wan DC  Wong KB 《PloS one》2011,6(11):e27228

Background

Coronaviruses (CoVs) can be classified into alphacoronavirus (group 1), betacoronavirus (group 2), and gammacoronavirus (group 3) based on diversity of the protein sequences. Their 3C-like protease (3CLpro), which catalyzes the proteolytic processing of the polyproteins for viral replication, is a potential target for anti-coronaviral infection.

Methodology/Principal Findings

Here, we profiled the substrate specificities of 3CLpro from human CoV NL63 (group 1), human CoV OC43 (group 2a), severe acute respiratory syndrome coronavirus (SARS-CoV) (group 2b) and infectious bronchitis virus (IBV) (group 3), by measuring their activity against a substrate library of 19×8 of variants with single substitutions at P5 to P3'' positions. The results were correlated with structural properties like side chain volume, hydrophobicity, and secondary structure propensities of substituting residues. All 3CLpro prefer Gln at P1 position, Leu at P2 position, basic residues at P3 position, small hydrophobic residues at P4 position, and small residues at P1'' and P2'' positions. Despite 3CLpro from different groups of CoVs share many similarities in substrate specificities, differences in substrate specificities were observed at P4 positions, with IBV 3CLpro prefers P4-Pro and SARS-CoV 3CLpro prefers P4-Val. By combining the most favorable residues at P3 to P5 positions, we identified super-active substrate sequences ‘VARLQ↓SGF’ that can be cleaved efficiently by all 3CLpro with relative activity of 1.7 to 3.2, and ‘VPRLQ↓SGF’ that can be cleaved specifically by IBV 3CLpro with relative activity of 4.3.

Conclusions/Significance

The comprehensive substrate specificities of 3CLpro from each of the group 1, 2a, 2b, and 3 CoVs have been profiled in this study, which may provide insights into a rational design of broad-spectrum peptidomimetic inhibitors targeting the proteases.  相似文献   

2.
The main protease (Mpro) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. SARS-CoV Mpro is composed of a catalytic N-terminal domain and an α-helical C-terminal domain linked by a long loop. Even though the N-terminal domain of SARS-CoV Mpro adopts a similar chymotrypsin-like fold as that of piconavirus 3C protease, the extra C-terminal domain is required for SARS-CoV Mpro to be enzymatically active. Here, we reported the NMR assignments of the SARS-CoV Mpro N-terminal domain alone, which are essential for its solution structure determination.  相似文献   

3.
Two viral proteases of severe acute respiratory syndrome coronavirus (SARS-CoV), a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro) are attractive targets for the development of anti-SARS drugs. In this study, nine alkylated chalcones (19) and four coumarins (1013) were isolated from Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV proteases (3CLpro and PLpro) were determined (cell-free/based). Of the isolated alkylated chalcones, chalcone 6, containing the perhydroxyl group, exhibited the most potent 3CLpro and PLpro inhibitory activity with IC50 values of 11.4 and 1.2?µM. Our detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the SARS-CoV 3CLpro, whereas noncompetitive inhibition was observed with the SARS-CoV PLpro.  相似文献   

4.
All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CLpro) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CLpro from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CLpro is less efficient at processing a peptide substrate due to MERS-CoV 3CLpro being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CLpro enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CLpro is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CLpro were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CLpro undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CLpro from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CLpro dimerization. Activation of MERS-CoV 3CLpro through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CLpro inhibitors as antiviral agents.  相似文献   

5.
The 3C-like proteinase (3CLpro) of the severe acute respiratory syndrome (SARS) coronavirus plays a vital role in virus maturation and is proposed to be a key target for drug design against SARS. Various in vitro studies revealed that only the dimer of the matured 3CLpro is active. However, as the internally encoded 3CLpro gets matured from the replicase polyprotein by autolytic cleavage at both the N-terminal and the C-terminal flanking sites, it is unclear whether the polyprotein also needs to dimerize first for its autocleavage reaction. We constructed a large protein containing the cyan fluorescent protein (C), the N-terminal flanking substrate peptide of SARS 3CLpro (XX), SARS 3CLpro (3CLP), and the yellow fluorescent protein (Y) to study the autoprocessing of 3CLpro using fluorescence resonance energy transfer. In contrast to the matured 3CLpro, the polyprotein, as well as the one-step digested product, 3CLP-Y-His, were shown to be monomeric in gel filtration and analytic ultracentrifuge analysis. However, dimers can still be induced and detected when incubating these large proteins with a substrate analog compound in both chemical cross-linking experiments and analytic ultracentrifuge analysis. We also measured enzyme activity under different enzyme concentrations and found a clear tendency of substrate-induced dimer formation. Based on these discoveries, we conclude that substrate-induced dimerization is essential for the activity of SARS-3CLpro in the polyprotein, and a modified model for the 3CLpro maturation process was proposed. As many viral proteases undergo a similar maturation process, this model might be generally applicable.  相似文献   

6.
The 3C-like protease (3CLpro) of severe acute respiratory syndrome associated coronavirus (SARS-CoV) is vital for SARS-CoV replication and is a promising drug target. Structure based virtual screening of 308 307 chemical compounds was performed using the computation tool Autodock 3.0.5 on a WISDOM Production Environment. The top 1468 ranked compounds with free binding energy ranging from −14.0 to −17.09 kcal mol−1 were selected to check the hydrogen bond interaction with amino acid residues in the active site of 3CLpro. Fifty-three compounds from 35 main groups were tested in an in vitro assay for inhibition of 3CLpro expressed by Escherichia coli. Seven of the 53 compounds were selected; their IC50 ranged from 38.57 ± 2.41 to 101.38 ± 3.27 μM. Two strong 3CLpro inhibitors were further identified as competitive inhibitors of 3CLpro with Ki values of 9.11 ± 1.6 and 9.93 ± 0.44 μM. Hydrophobic and hydrogen bond interactions of compound with amino acid residues in the active site of 3CLpro were also identified.  相似文献   

7.
The 3C-like protease (3CLpro) of SARS-CoV-2 is a potential therapeutic target for COVID-19. Importantly, it has an abundance of structural information solved as a complex with various drug candidate compounds. Collecting these crystal structures (83 Protein Data Bank (PDB) entries) together with those of the highly homologous 3CLpro of SARS-CoV (101 PDB entries), we constructed the crystal structure ensemble of 3CLpro to analyze the dynamic regulation of its catalytic function. The structural dynamics of the 3CLpro dimer observed in the ensemble were characterized by the motions of four separate loops (the C-loop, E-loop, H-loop, and Linker) and the C-terminal domain III on the rigid core of the chymotrypsin fold. Among the four moving loops, the C-loop (also known as the oxyanion binding loop) causes the order (active)–disorder (collapsed) transition, which is regulated cooperatively by five hydrogen bonds made with the surrounding residues. The C-loop, E-loop, and Linker constitute the major ligand binding sites, which consist of a limited variety of binding residues including the substrate binding subsites. Ligand binding causes a ligand size dependent conformational change to the E-loop and Linker, which further stabilize the C-loop via the hydrogen bond between the C-loop and E-loop. The T285A mutation from SARS-CoV 3CLpro to SARS-CoV-2 3CLpro significantly closes the interface of the domain III dimer and allosterically stabilizes the active conformation of the C-loop via hydrogen bonds with Ser1 and Gly2; thus, SARS-CoV-2 3CLpro seems to have increased activity relative to that of SARS-CoV 3CLpro.  相似文献   

8.
SARS coronavirus main protease (Mpro) plays an essential role in the extensive proteolytic processing of the viral polyproteins (pp1a and pp1ab), and it is an important target for anti-SARS drug development. We have reported that both the Mpro C-terminal domain alone (Mpro-C) and the N-finger deletion mutant of Mpro (Mpro-Δ7) exist as a stable dimer and a stable monomer (Zhong et al., J Virol 2008; 82:4227-4234). Here, we report structures of both Mpro-C monomer and dimer. The structure of the Mpro-C monomer is almost identical to that of the C-terminal domain in the crystal structure of Mpro. Interestingly, the Mpro-C dimer structure is characterized by 3D domain-swapping, in which the first helices of the two protomers are interchanged and each is enwrapped by four other helices from the other protomer. Each folding subunit of the Mpro-C domain-swapped dimer still has the same general fold as that of the Mpro-C monomer. This special dimerization elucidates the structural basis for the observation that there is no exchange between monomeric and dimeric forms of Mpro-C and Mpro-Δ7.  相似文献   

9.
A non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold was evaluated as a novel inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CLpro). The decahydroisoquinolin scaffold has been demonstrated to be an effective hydrophobic center to interact with S2 site of SARS 3CLpro, but the lack of interactions at S3 to S4 site is thought to be a major reason for the moderate inhibitory activity. In this study, the effects of an additional non-prime site substituent on the scaffold as well as effects of several warheads are evaluated. For the introduction of a desired non-prime site substituent, amino functionality was introduced on the decahydroisoquinolin scaffold, and the scaffold was constructed by Pd(II) catalyzed diastereoselective ring formation. The synthesized decahydroisoquinolin inhibitors showed about 2.4 times potent inhibitory activities for SARS 3CLpro when combined with a non-prime site substituent. The present results indicated not only the expected additional interactions with the SARS 3CLpro but also the possibility of new inhibitors containing a fused-ring system as a hydrophobic scaffold and a new warhead such as thioacetal.  相似文献   

10.
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50’s of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50’s of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.  相似文献   

11.
The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CLpro. 3CLpro plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CLpro inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CLpro. Structure–activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k1 showed most potent inhibitory activity against 3CLpro (IC50 = 1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs.  相似文献   

12.
采用生物信息学方法分析新型冠状病毒(Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)3C样蛋白酶(3-chymotrypsin-like protease, 3CLpro)的理化性质、结构与功能,为抗SARS-CoV-2药物研发提供参考。通过ProtParam、ProtScale、Bioedit服务器对3CLpro进行一级结构如氨基酸理化性质、疏水性的预测分析;COILS Server、SignalP、TMPred、TargetP Server、NetPhos Server、NetNGlyc Server服务器对3CLpro结构进行如卷曲螺旋区、信号肽、跨膜结构域、亚细胞定位、磷酸化位点、糖基化位点的预测分析;SOPMA、SWISS MODEL服务器对3CLpro进行二级结构、三级结构的预测分析;IEBD对3CLpro进行B细胞表位的预测分析。3CLpro由306个氨基酸组成,其中亮氨酸占比最高,分子质量为33 796.64,理论等电点值为5.95,半衰期为1.9 h,脂肪系数为82.12;亲水性较高,不具有卷曲螺旋区与信号肽特点,含一个跨膜区;具有4个磷酸化位点,2个糖基化修饰点;二级结构中无规则卷曲占据主导地位,三级结构能与已知的6y2g.1(SMTL ID)模型同源建模;存在4个潜在的B细胞表位,位于92~101位的氨基酸区域应答频率最高。利用生物信息学技术分析3CLpro的结构和功能特征,可为新型冠状肺炎药物的研发提供参考。  相似文献   

13.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a global threat to human health has highlighted the need for the development of novel therapies targeting current and emerging coronaviruses with pandemic potential. The coronavirus main protease (Mpro, also called 3CLpro) is a validated drug target against coronaviruses and has been heavily studied since the emergence of SARS-CoV-2 in late 2019. Here, we report the biophysical and enzymatic characterization of native Mpro, then characterize the steady-state kinetics of several commonly used FRET substrates, fluorogenic substrates, and six of the 11 reported SARS-CoV-2 polyprotein cleavage sequences. We then assessed the suitability of these substrates for high-throughput screening. Guided by our assessment of these substrates, we developed an improved 5-carboxyfluorescein-based FRET substrate, which is better suited for high-throughput screening and is less susceptible to interference and false positives than existing substrates. This study provides a useful framework for the design of coronavirus Mpro enzyme assays to facilitate the discovery and development of therapies targeting Mpro.  相似文献   

14.
SARS-CoV 3CLpro plays an important role in viral replication. In this study, we performed a biological evaluation on nine phlorotannins isolated from the edible brown algae Ecklonia cava. The nine isolated phlorotannins (19), except phloroglucinol (1), possessed SARS-CoV 3CLpro inhibitory activities in a dose-dependently and competitive manner. Of these phlorotannins (19), two eckol groups with a diphenyl ether linked dieckol (8) showed the most potent SARS-CoV 3CLpro trans/cis-cleavage inhibitory effects (IC50s = 2.7 and 68.1 μM, respectively). This is the first report of a (8) phlorotannin chemotype significantly blocking the cleavage of SARS-CoV 3CLpro in a cell-based assay with no toxicity. Furthermore, dieckol (8) exhibited a high association rate in the SPR sensorgram and formed extremely strong hydrogen bonds to the catalytic dyad (Cys145 and His41) of the SARS-CoV 3CLpro.  相似文献   

15.
Severe acute respiratory syndrome (SARS) led to a life-threatening form of atypical pneumonia in late 2002. Following that, Middle East Respiratory Syndrome (MERS-CoV) has recently emerged, killing about 36% of patients infected globally, mainly in Saudi Arabia and South Korea. Based on a scaffold we reported for inhibiting neuraminidase (NA), we synthesized the analogues and identified compounds with low micromolar inhibitory activity against 3CLpro of SARS-CoV and MERS-CoV. Docking studies show that a carboxylate present at either R1 or R4 destabilizes the oxyanion hole in the 3CLpro. Interestingly, 3f, 3g and 3m could inhibit both NA and 3CLpro and serve as a starting point to develop broad-spectrum antiviral agents.  相似文献   

16.
SARS-CoV-2 3C-like protease (3CLpro), a potential therapeutic target for COVID-19, consists of a chymotrypsin fold and a C-terminal α-helical domain (domain III), the latter of which mediates dimerization required for catalytic activation. To gain further understanding of the functional dynamics of SARS-CoV-2 3CLpro, this review extends the scope to the comparative study of many crystal structures of proteases having the chymotrypsin fold (clan PA of the MEROPS database). First, the close correspondence between the zymogen-enzyme transformation in chymotrypsin and the allosteric dimerization activation in SARS-CoV-2 3CLpro is illustrated. Then, it is shown that the 3C-like proteases of family Coronaviridae (the protease family C30), which are closely related to SARS-CoV-2 3CLpro, have the same homodimeric structure and common activation mechanism via domain III mediated dimerization. The survey extended to order Nidovirales reveals that all 3C-like proteases belonging to Nidovirales have domain III, but with various chain lengths, and 3CLpro of family Mesoniviridae (family C107) has the same homodimeric structure as that of C30, even though they have no sequence similarity. As a reference, monomeric 3C proteases belonging to the more distant family Picornaviridae (family C3) lacking domain III are compared with C30, and it is shown that the 3C proteases are rigid enough to maintain their structures in the active state.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12551-022-01020-x.  相似文献   

17.
3CLpro of SARS-CoV-2 is one of the enzymes required for the replication process of the virus responsible for the COVID-19 pandemic. In this study, changes in protein stability and substrate affinity caused by mutations were investigated to stir the development of potent inhibitors. Sequence data of samples were obtained from the NCBI Virus database. Mutation analyses were performed with RDP4 and MegaX. 3CLpro tertiary models were created using Robetta. Molecular docking for peptidomimetic substrate and inhibitor ligand was done with Autodock v4.2 and Haddock v2.4. Protein stability analysis was performed using mCSM stability and DynaMut2. Twenty-four missense mutations in 3CLpro were identified in this study. Changes in the 3CLpro structure induced by the mutations Met49Thr, Leu167Ser, and Val202Ala resulted in significant levels of instability (-2.029,-2.612,-2.177 kcal.mol-1, respectively). The lowest interaction energy for substrate was -58.7 kcal.mol-1 and -62.6 kcal.mol-1 in wild-type and mutant, respectively. The lowest docking energy for ligand was -6.19 and -9.52 kcal.mol-1 for wild-type and mutant, respectively. This study reports for the first time that mutations cause increased substrate affinity of 3CLpro from SARS-CoV-2. This research provides important data for the development of potent peptidomimetic inhibitors for the treatment of COVID-19. Keywords: 3CL-protease, mutation analysis, protein stability, SARS-CoV-2 genome, substrate affinity  相似文献   

18.
We describe here the design, synthesis and biological evaluation of a series of molecules toward the development of novel peptidomimetic inhibitors of SARS-CoV 3CLpro. A docking study involving binding between the initial lead compound 1 and the SARS-CoV 3CLpro motivated the replacement of a thiazole with a benzothiazole unit as a warhead moiety at the P1′ site. This modification led to the identification of more potent derivatives, including 2i, 2k, 2m, 2o, and 2p, with IC50 or Ki values in the submicromolar to nanomolar range. In particular, compounds 2i and 2p exhibited the most potent inhibitory activities, with Ki values of 4.1 and 3.1 nM, respectively. The peptidomimetic compounds identified through this process are attractive leads for the development of potential therapeutic agents against SARS. The structural requirements of the peptidomimetics with potent inhibitory activities against SARS-CoV 3CLpro may be summarized as follows: (i) the presence of a benzothiazole warhead at the S1′-position; (ii) hydrogen bonding capabilities at the cyclic lactam of the S1-site; (iii) appropriate stereochemistry and hydrophobic moiety size at the S2-site and (iv) a unique folding conformation assumed by the phenoxyacetyl moiety at the S4-site.  相似文献   

19.
Since the emergence of the severe acute respiratory syndrome (SARS) to date, neither an effective antiviral drug nor a vaccine against SARS is available. However, it was found that a mixture of two HIV-1 proteinase inhibitors, lopinavir and ritonavir, exhibited some signs of effectiveness against the SARS virus. To understand the fine details of the molecular interactions between these proteinase inhibitors and the SARS virus via complexation, molecular dynamics simulations were carried out for the SARS-CoV 3CLpro free enzyme (free SARS) and its complexes with lopinavir (SARS-LPV) and ritonavir (SARS-RTV). The results show that flap closing was clearly observed when the inhibitors bind to the active site of SARS-CoV 3CLpro. The binding affinities of LPV and RTV to SARS-CoV 3CLpro do not show any significant difference. In addition, six hydrogen bonds were detected in the SARS-LPV system, while seven hydrogen bonds were found in SARS-RTV complex.  相似文献   

20.
The current study was designed to assess the inhibitory activity of Broussonetia papyrifera-derived polyphenols against 3-chymotrypsin-like and papain-like coronavirus cysteine proteases. The isolated compounds were broussochalcone B (1), broussochalcone A (2), 4-hydroxyisolonchocarpin (3), papyriflavonol A (4), 3′-(3-methylbut-2-enyl)-3′,4,7-trihydroxyflavane (5), kazinol A (6), kazinol B (7), broussoflavan A (8), kazinol F (9), and kazinol J (10). All polyphenols were more potent against papain-like protease (PLpro) than against 3-chymotripsin-like protease (3CLpro); therefore, we investigated their structural features that were responsible for this selectivity. Compound 4 was the most potent inhibitor of PLpro with an IC50 value of 3.7?μM. The active compounds displayed kinetic behaviors, and the binding constants of their interaction with PLpro were determined from surface plasmon resonance analysis. Our results suggest B. papyrifera constituents as promising candidates for development into potential anti-coronaviral agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号