首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously reported, using a coimmunoprecipitation assay, that the B form (PR-B) of the human progesterone receptor from T47D human breast cancer cells dimerizes in solution with the A receptor (PR-A) and that the extent of dimerization correlates with receptor binding activity for specific DNA sequences [DeMarzo, A.M., Beck, C.A., O?ate, S.A., & Edwards, D.P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 72-76]. This suggested that solution dimerization is an intermediate step in the receptor activation process. The present study has tested the effects of the progesterone antagonist RU486 on solution dimerization of progesterone receptors (PR). As determined by the coimmunoprecipitation assay, RU486 binding did not impair dimerization of receptors; rather, the antagonist promoted more efficient solution dimerization than the progestin agonist R5020. This enhanced receptor dimerization correlated with a higher DNA binding activity for transformed receptors bound with RU486. RU486 has been shown previously to produce two other alterations in the human PR when compared with R5020. PR-RU486 complexes in solution exhibit a faster sedimentation rate (6 S) on salt-containing sucrose density gradients than PR-R5020 complexes (4 S), and PR-DNA complexes have a faster electrophoretic mobility on gel-shift assays in the presence of RU486. We presently show that the 6 S PR-RU486 complex is a receptor monomer, not a dimer. The increased sedimentation rate and increased mobility on gel-shift assays promoted by RU486 were also observed with recombinant PR-A and PR-B separately expressed in insect cells from baculovirus vectors. These results suggest that RU486 induces a distinct conformational change both in PR monomers in solution and in dimers bound to DNA. We also examined whether conformational changes in PR induced by RU486 would prevent a PR polypeptide bound to RU486 from heterodimerization with another PR polypeptide bound to R5020. To evaluate this, PR-A and PR-B that were separately bound to R5020 or RU486 in whole cells were mixed in vitro. PR-A-RU486 was capable of dimerization with PR-B-R5020, and this was demonstrated for heterodimers both formed in solution and bound to specific DNA. The capability to form heterodimers in vitro raises the possibility that the antagonist action of RU486 in vivo could in part be imposed in a dominant negative fashion through heterodimerization between one receptor subunit bound to an agonist and another bound to RU486.  相似文献   

3.
D F Skafar 《Biochemistry》1991,30(45):10829-10832
The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with [3H]progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020 (p less than 0.001). This indicated that a difference in the binding mechanism of RU486 and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable (p = 0.915). These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.  相似文献   

4.
We have studied the phosphorylation of progesterone receptors (PR) in T47Dco human breast cancer cells using a monoclonal antibody directed against human PR called AB-52. This antibody recognizes both the A- (Mr approximately 94,000) and B- (Mr approximately 120,000) hormone binding proteins of PR, and was used to immunoprecipitate phosphorylated receptors isolated from cells incubated in vivo with [32P]orthophosphate. The specific activity, or phosphorylation levels, relative to protein levels was quantified by combined immunoblotting and autoradiography followed by densitometry. We find that immunopurified untransformed hormone-free receptors, which have a characteristic triplet B, singlet A structure, are phosphoproteins with similar levels of phosphate incorporation in all protein bands. If PR are first transformed to the nuclear binding form by treatment of cells with progesterone, and then labeled with [32P]orthophosphate, the receptor proteins are additionally phosphorylated. These chromatin-bound hormone occupied receptors incorporate five to 10 times more labeled phosphate per total receptor protein than do PR from untreated cells during the same [32P]incubation time. The second round of phosphorylation may also account for mobility shifts of transformed A- and B-receptors observed in sodium dodecyl sulfate-polyacrylamide gels. Both untransformed and transformed species of A- and B-receptors are phosphorylated only on serine residues, and neither the extent of phosphorylation, nor the phosphoamino acids, are affected by treatment of the cells with epidermal growth factor or insulin. We previously reported that after hormone binding and transformation of receptors to the tight chromatin binding state, PR undergo processing, or nuclear down-regulation. AB-52 was used to compare PR protein and phosphorylation levels when cells were treated for 0.5-48 h with progesterone or the synthetic progestin R5020. Both agonists lead to hyperphosphorylation of nuclear PR before phosphorylation levels decrease, in parallel with the drop in protein levels as receptors down-regulate. Treatment of cells with RU 486, an antiprogestin, leads to PR transformation as determined by immunoblotting, but subsequent down-regulation does not occur. After transformation, chromatin-bound RU 486-occupied receptors become intensely phosphorylated however, with specific activities 15 times greater than those of untransformed PR. Since these receptors are phosphorylated but not processed, the hormone-induced nuclear phosphorylation of PR is unlikely to be a signal for receptor processing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
In order to determine if different physicochemical properties exist among antihormone-receptor complexes, we have compared the interaction of the antiprogestin RU486 with progesterone receptor (PR) versus the triphenylethylene antiestrogen H1285 (4-(N,N-diethyl-aminoethoxy)-4'-methoxy-alpha-(p-hydroxyphenyl-alp ha'- ethylstilbene] with estrogen receptor (ER) from rabbit uterine tissue. Contrary to other reports, we observed no difference in the sedimentation properties of transformed PR (4S) when bound by the antagonist RU486 versus the progesterone agonist R5020 in either cytosol or DEAE partially-purified receptor preparations analyzed on sucrose gradients containing 0.3 M KCl. In addition, we found no difference in the sedimentation properties of these receptor preparations in the presence of 10 mM sodium molybdate: the nontransformed RU486-PR and nontransformed R5020-PR both sedimented as a 6S species. These same results were obtained when the receptor preparation and gradient analysis were performed in the absence of monothioglycerol. Likewise, there was no change in the sedimentation properties of the transformed PR when the receptor, partially purified in the absence of molybdate, was analyzed on sucrose gradients containing 10 mM sodium molybdate to prevent receptor alteration during centrifugation. From DNA-cellulose assays performed with partially purified PR in the absence of molybdate we determined that the 4S form of R5020-PR and RU486-PR is transformed receptor; whereas in the presence of molybdate, the 6S species is nontransformed. In contrast, we found a different pattern of sedimentation when comparing transformed antiestrogen-receptor complexes with transformed estrogen-receptor complexes. In this case, transformed H1285-ER sedimented as 6S and estradiol-ER sedimented as 4S. We conclude from these experiments that these two antihormones, RU486 and H1285, may have different mechanisms of action in their antagonism of steroid hormone action. Antiestrogen stabilizes the salt-transformed ER as a dimer while antiprogestin appears to permit dissociation of the oligomeric form of the receptor to the monomeric form.  相似文献   

8.
9.
Here we describe the 1.95 Å structure of the clinically used antiprogestin RU486 (mifepristone) in complex with the progesterone receptor (PR). The structure was obtained by taking a crystal of the PR ligand binding domain containing the agonist norethindrone and soaking it in a solution containing the antagonist RU486 for extended times. Clear ligand exchange could be observed in one copy of the PR ligand binding domain dimer in the crystal. RU486 binds while PR is in an agonistic conformation without displacing helix 12. Although this is probably because of the constraints of the crystal lattice, it demonstrates that helix 12 displacement is not a prerequisite for RU486 binding. Interestingly, B-factor analysis clearly shows that helix 12 becomes more flexible after RU486 binding, suggesting that RU486, being a model antagonist, does not induce one fixed conformation of helix 12 but changes its positional equilibrium. This conclusion is confirmed by comparing the structures of RU486 bound to PR and RU486 bound to the glucocorticoid receptor.The drug RU486, also known as mifepristone, is the only clinically approved antiprogestin (trade name Mifegyne® or Mifeprex®). It is applied to terminate pregnancy and has been clinically tested in many more indications (1, 2). Recently, it was shown that RU486 can prevent mammary tumorigenesis in Brca1/p53-deficient mice, implying a use for RU486 in breast cancer therapy (3).RU486 exerts its clinical effect by binding to the ligand binding domain of the progesterone receptor, although RU486 can also bind to the glucocorticoid receptor (GR)2 and weakly to the androgen receptor (4). All these nuclear receptors are close sequence homologs (5). Because the anti-GR activity of RU486 might be problematic in chronic administration (1), past research has focused on finding RU486 variants with more selectivity (4, 610) (Open in a separate windowDespite the clinical importance of RU486, there is currently no three-dimensional structure of it bound to PR, its principal target. However, other complexes have been informative, such as that between the PR ligand binding domain and asoprisnil, which is biochemically a full antagonist and is chemically related to RU486 (11). Also informative is the crystal structure of RU486 bound to the GR LBD (12). In all these structures the antagonists bind to a receptor conformation in which the C-terminal helix (called helix 12) is displaced compared with structures of bound agonists. This so-called helix 12 displacement was first seen in the structure of raloxifene bound to the estrogen receptor α, and it is commonly thought to be a general nuclear receptor mechanism (5, 13).The indications from x-ray structures that in PR, RU486 can induce displacement of helix 12 are supported by biochemical data. For instance the truncation of the PR C terminus induces RU486 to act as agonist (14). Also, the C terminus of PR becomes prone to proteolysis when RU486 binds (15). Finally, from modeling RU486 into the structure of bound progesterone, it has been concluded that the 11β substitution of RU486 (16).Despite the evidence that RU486 can induce displacement of helix 12, it is still unclear if RU486 obligately dissociates helix 12 through steric repulsion or if RU486 allows multiple positions of helix 12 but changes their dynamic equilibrium. In this latter theory, called the dynamic model, RU486 would also be able to bind when helix 12 is in an agonist conformation. Indeed, under rare conditions RU486 can function as an agonist (7), and the compound asoprisnil, in vivo, is known as a partial agonist (11). The use of corepressor peptides in crystal complexes, such as in the PR-asoprisnil complex (11), might lock helix 12 into its final antagonist position, whereas the compound alone would have more subtle effects. The dynamic model controversy has also arisen with other nuclear receptors, indicating its wider scope (13, 17).To further elucidate the mechanism of RU486, we have determined the three-dimensional structure of RU486 bound to PR. For this, we developed a novel protocol in which ligands are exchanged in an existing PR crystal in which norethindrone is bound. The crystal lattice restricts the position of helix 12 to the agonist position, but RU486 is still able to bind, proving that it is sterically compatible with an agonist position of helix 12 and suggesting that RU486 works through changing the dynamic equilibrium of helix 12. Comparing our structure with the asoprisnil complex gives insight into the mechanism of helix 12 destabilization, which is confirmed by comparing our structure to that of RU486 bound to GR.  相似文献   

10.
11.
In order to understand the molecular basis for antiprogestin action, we have compared the interaction of the antiprogestin [3H]RU38, 486 (RU486) and the progestin [3H]R5020 with the progesterone receptor (PR). In both MCF-7 and T47D human breast cancer cells, we have observed marked differences in the sedimentation properties of the PR on high salt sucrose gradients: while the R5020-receptor complexes sediment at approximately 4 S (4.4 +/- 0.1 S), the RU486-receptor sediments as a prominent 6 S species as well as a 4 S species. This binding is abolished by excess unlabelled R5020, RU486 or progesterone, but is unaffected by excess unlabelled hydrocortisone or dexamethasone, indicating that both the 4 S and 6 S species represent the PR and not glucocorticoid receptor. Although the relative distribution of 4 S and 6 S forms is not altered by treatment with DNAse or RNAse, exposure to 10 mM thioglycerol or to 3 M urea results in conversion of the 6 S to the 4 S form, suggesting that disulfide bonds and hydrophobic interactions are important in maintaining the integrity of the 6 S form. These findings suggest that the 6 S antiprogestin complex is formed as a result of the interaction of PR units with each other or with a different protein. This change in receptor association state may be an important aspect of the antiprogestin activity of RU486.  相似文献   

12.
A pulse-chase labeling technique was used to determine the properties of glucocorticoid receptors occupied by the antiglucocorticoid hormone RU486 in S49.1 mouse lymphoma cells. Cells were pulse-labeled with [35S]methionine and then at the beginning of the chase, either no hormone (control), dexamethasone, or RU486 was added to cells. At 4 h into the chase, cytosol was prepared and receptors were immunoadsorbed to protein A-Sepharose using the BuGR2 antireceptor antibody. Immunoadsorbed proteins were resolved by gel electrophoresis and analyzed by autoradiography. The 90 kDa heat shock protein (hsp90) coimmunoadsorbed with receptors from control cells when protein A-Sepharose pellets were washed with 250 mM NaCl but not when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that hsp90-receptor complexes are disrupted by a high concentration of salt in the absence of molybdate. hsp90 coimmunoadsorbed with receptors from RU486-treated cells even when protein A-Sepharose pellets were washed with 500 mM NaCl, indicating that RU486 stabilizes the association of hsp90 with the glucocorticoid receptor. In contrast, hsp90 did not coimmunoadsorb with receptors from dexamethasone-treated cells, consistent with earlier evidence that hsp90 dissociates from the receptor when the receptor binds glucocorticoid hormone. Dexamethasone induced a rapid quantum decrease in the amount of normal receptor recovered from cytosol but did not induce a decrease in the amount of nuclear transfer deficient receptor recovered from cytosol, consistent with tight nuclear binding of normal receptors occupied by dexamethasone. In contrast, RU486 did not induce a quantum decrease in the recovery of normal receptors from cytosol, indicating that receptors occupied by RU486 are not tightly bound in the nuclear fraction. We conclude that the antiglucocorticoid hormone RU486, in contrast to the glucocorticoid hormone dexamethasone, stabilizes the association between the glucocorticoid receptor and hsp90. The decreased affinity of receptors occupied by RU486 for the nuclear fraction may be due to their association with hsp90 and may account for the failure of RU486 to exert agonist activity.  相似文献   

13.
C Hurd  V K Moudgil 《Biochemistry》1988,27(10):3618-3623
We have examined and compared the binding characteristics of the progesterone agonist R5020 [promegestone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione] and the progesterone antagonist RU486 [mifepristone, 17 beta-hydroxy-11 beta-[4-(dimethylamino) phenyl]-17 alpha-(prop-1-ynyl)-estra-4,9-dien-3-one] in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting Kd values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4 degrees C, showing saturation of binding sites at 1-2 h for [3H]progesterone and 2-4 h for both [3H]R5020 and [3H]RU486. Addition of molybdate and glycerol to cytosol increased the extent of [3H]R5020 binding. The extent of [3H]RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the [3H]R5020- and [3H]RU486-receptor complexes at 37 degrees C. Although the rate of association of [3H]RU486 with the cytosolic macromolecule was slower than that of [3H]R5020, its dissociation from the ligand-macromolecule complex was significantly slower than [3H]R5020. Competitive steroid binding analysis revealed that [3H]progesterone, [3H]R5020, and [3H]RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S [3H]R5020 and [3H]RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

16.
We present here the x-ray structures of the progesterone receptor (PR) in complex with two mixed profile PR modulators whose functional activity results from two differing molecular mechanisms. The structure of Asoprisnil bound to the agonist state of PR demonstrates the contribution of the ligand to increasing stability of the agonist conformation of helix-12 via a specific hydrogen-bond network including Glu(723). This interaction is absent when the full antagonist, RU486, binds to PR. Combined with a previously reported structure of Asoprisnil bound to the antagonist state of the receptor, this structure extends our understanding of the complex molecular interactions underlying the mixed agonist/antagonist profile of the compound. In addition, we present the structure of PR in its agonist conformation bound to the mixed profile compound Org3H whose reduced antagonistic activity and increased agonistic activity compared with reference antagonists is due to an induced fit around Trp(755), resulting in a decreased steric clash with Met(909) but inducing a new internal clash with Val(912) in helix-12. This structure also explains the previously published observation that 16α attachments to RU486 analogs induce mixed profiles by altering the binding of 11β substituents. Together these structures further our understanding of the steric and electrostatic factors that contribute to the function of steroid receptor modulators, providing valuable insight for future compound design.  相似文献   

17.
用免疫细胞化学LSAB法,兔抗人孕酮受体抗体(适用于小鼠)显示小鼠卵巢、输卵管、子宫和阴道中的孕酮受体。结果显示:未注射RU486的动物的子宫与阴道内孕酮受体丰富,输卵管中含量较少,卵巢中未见阳性反应物质。RU486注射4天后,子宫与阴道中孕酮受体明显减少;注射后7天,输卵管、子宫和阴道都为阴性反应。该结果显示了孕酮受体在雌性小鼠生殖系统内的分布特点,提示RU486封闭孕酮受体的最佳时间为用药后第7天。  相似文献   

18.
Selective progesterone receptor modulators (SPRMs) have been suggested as therapeutic agents for treatment of gynecological disorders. One such SPRM, asoprisnil, was recently in clinical trials for treatment of uterine fibroids and endometriosis. We present the crystal structures of progesterone receptor (PR) ligand binding domain complexed with asoprisnil and the corepressors nuclear receptor corepressor (NCoR) and SMRT. This is the first report of steroid nuclear receptor crystal structures with ligand and corepressors. These structures show PR in a different conformation than PR complexed with progesterone (P4). We profiled asoprisnil in PR-dependent assays to understand further the PR-mediated mechanism of action. We confirmed previous findings that asoprisnil demonstrated antagonism, but not agonism, in a PR-B transfection assay and the T47D breast cancer cell alkaline phosphatase activity assay. Asoprisnil, but not RU486, weakly recruited the coactivators SRC-1 and AIB1. However, asoprisnil strongly recruited the corepressor NCoR in a manner similar to RU486. Unlike RU486, NCoR binding to asoprisnil-bound PR could be displaced with equal affinity by NCoR or TIF2 peptides. We further showed that it weakly activated T47D cell gene expression of Sgk-1 and PPL and antagonized P4-induced expression of both genes. In rat leiomyoma ELT3 cells, asoprisnil demonstrated partial P4-like inhibition of cyclooxygenase (COX) enzymatic activity and COX-2 gene expression. In the rat uterotrophic assay, asoprisnil demonstrated no P4-like ability to oppose estrogen. Our data suggest that asoprisnil differentially recruits coactivators and corepressors compared to RU486 or P4, and this specific cofactor interaction profile is apparently insufficient to oppose estrogenic activity in rat uterus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号