首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Iron deficiency (iron chlorosis) is the major nutritional stress affecting fruit tree crops in calcareous soils in the Mediterranean area. This work reviews the changes in PS II efficiency in iron-deficient leaves. The iron deficiency-induced leaf yellowing is due to decreases in the leaf concentrations of photosynthetic pigments, chlorophylls and carotenoids. However, carotenoids, and more specifically lutein and the xanthophylls of the V+A+Z (Violaxanthin+ Antheraxanthin+Zeaxanthin) cycle are less affected than chlorophylls. Therefore, iron-chlorotic leaves grown in either growth chambers or field conditions have increases in the molar ratios lutein/chlorophyll a and (V+A+Z)/chlorophyll a. These pigment changes are associated to changes in leaf absorptance and reflectance. In the chlorotic leaves the amount of light absorbed per unit chlorophyll increases. The low chlorophyll, iron-deficient leaves showed no sustained decreases in PS II efficiency, measured after dark adaptation, except when the deficiency was very severe. This occurred when plants were grown in growth chambers or in field conditions. However, iron-deficient leaves showed decreases in the actual PS II efficiency at steady-state photosynthesis, due to decreases in photochemical quenching and intrinsic PS II efficiency. Iron-chlorotic leaves were protected not only by the decrease in leaf absorptance, but also by down-regulation mechanisms enhancing non-photochemical quenching and thermal dissipation of the light absorbed by PS II within the antenna pigment bed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The changes induced in the photosynthetic apparatus of spinach (Spinacia oleracea L.) seedlings exposed to iron deficiency shortly after germination were characterized with two proteomic approaches coupled with chlorophyll and xanthophyll analysis and in vivo measurements of photosynthesis. During the first 10 d of iron deficiency the concentrations of chlorophyll b and violaxanthin were greatly reduced, but all xanthophylls recovered after 13-17 d of iron deficiency, when both chlorophylls were negatively affected. No new protein was formed in iron-deficient leaves, and no protein disappeared altogether. Photosystem I (PSI) proteins were largely reduced, but the stoichiometry of the antenna composition of PSI was not compromised. On the contrary, PSII proteins were less affected by the stress, but the specific antennae Lhcb4 and Lhcb6, Lhcb2 and its isoform Lhcb1.1 were all reduced, while the concentration of Lhcb3 increased. A strong reduction in thylakoid bending and an altered distribution pattern for the reduced PSI and PSII complexes were observed microscopically in iron-deficient leaves. Supercomplex organization was also affected by the stress. The trimeric organization of Lhcb and the dimerization of Lhca were reduced, while monomerization of Lhcb increased. However, the trimerization of Lhcb was partially recovered after 13-17 d of iron deficiency. In iron-deficient leaves, photosynthesis was strongly inhibited at different light intensities, and a high de-epoxidation status of the xanthophylls was observed, in association with a strong impairment of photochemical efficiency and an increase of heat dissipation as monitored by the non-photochemical quenching of fluorescence. All these negative effects of iron deficiency were attenuated but not fully reversed after again supplying iron to iron-deficient leaves for 7-13 d. These results indicate that iron deficiency has a strong impact on the proteomic structure of spinach photosystems and suggest that, in higher plants, adaptive mechanisms common in lower organisms, which allow rapid changes of the photosystem structure to cope with iron stress, are absent. It is speculated that the observed changes in the monomer-trimer equilibrium of major PSII antennae, which is possibly the result of xanthophyll fluctuations, is a first adaptative adjustment to iron deficiency, and may eventually play a role in light dissipation mechanisms.  相似文献   

3.
缺铁对大豆叶片光合作用和光系统Ⅱ功能的影响   总被引:2,自引:0,他引:2  
通过气体交换和叶绿素荧光测定研究了缺铁对大豆叶片碳同化和光系统Ⅱ的影响。缺铁条件下大豆光合速率(Pn)大幅下降;最大光化学效率(po)下降幅度较小;荧光诱导动力学曲线发生明显的变化,其中电子传递活性明显下降,K相(VK)相对荧光产量提高。缺铁大豆的天线转化效率(Fv'/Fm')、光化学猝灭系数(qP)和光系统Ⅱ实际光化学效率(ΦPSⅡ)降低,而非光化学猝灭(NPQ)则明显增加。此外,缺铁大豆的光后荧光上升增强。据此,认为铁缺乏伤害了光系统Ⅱ复合物供体侧和受体侧的电子传递;缺铁条件下光系统I环式电子传递的增强可能在维持激发能耗散和ATP供给方面起一定作用。  相似文献   

4.
Jiang  Chuang-Dao  Gao  Hui-Yuan  Zou  Qi 《Photosynthetica》2001,39(2):269-274
Pigment contents of chloroplasts and net photosynthetic rate were dramatically reduced in maize leaves suffering from iron deficiency. However, the reduction in photosynthesis was probably not caused by decreased contents of chlorophylls and carotenoids and by photon absorption; the primary limiting factor for photosynthesis may rather be the decrease of electron transport activity in photosystem 1. Iron-deficient leaves suffered serious acceptor-side photoinhibition, and more than 60 % of absorbed photons were dissipated, while less than 40 % was used in photochemical reaction. Thermal energy dissipation depending on xanthophyll cycle and D1 protein turnover was enhanced when acceptor-side photoinhibition occurred in iron-deficient maize leaves.  相似文献   

5.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

6.
Iron deficiency was found to affect the redox state of the Photosystem II acceptor side in dark-adapted, attached leaves of sugar beet (Beta vulgaris L.). Dark-adapted iron-deficient leaves exhibited relatively high Fo and Fpl levels in the Kautsky chlorophyll fluorescence induction curve when compared to the iron-sufficient controls. However, far-red illumination led to marked decreases in the apparent Fo and Fpl levels. Modulated fluorescence showed that far-red light decreased the fluorescence yield to the true Fo levels by increasing photochemical quenching, without inducing changes in the level of non-photochemical quenching. In dark-adapted, iron-deficient leaves, far-red illumination induced a faster fluorescence decay in the µs-ms time domain, indicating an improvement in the electron transport after the primary quinone acceptor in the reducing side of Photosystem II. All these data indicate that in iron-deficient leaves the plastoquinone pool was reduced in the dark. The extent of the plastoquinone reduction in sugar beet depended on the chlorophyll concentration of the leaf, on the time of preillumination and on the duration of dark adaptation. The dark reduction of plastoquinone was observed not only in sugar beet but also in other plant species affected by iron deficiency both in controlled conditions and in the field.  相似文献   

7.
Photosynthesis, photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle in the senescent flag leaves of wheat (Triticum aestivum L.) plants grown in the field were investigated. Compared to the non-senescent leaves, photosynthetic capacity was significantly reduced in senescent flag leaves. The light intensity at which photosynthesis was saturated also declined significantly. The light response curves of PSII photochemistry indicate that a down-regulation of PSII photochemistry occurred in senescent leaves in particular at high light. The maximal efficiency of PSII photochemistry in senescent flag leaves decreased slightly when measured at predawn but substantially at midday, suggesting that PSII function was largely maintained and photoinhibition occurred in senescent leaves when exposed to high light. At midday, PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centers decreased considerably, while non-photochemical quenching increased significantly. Moreover, compared with the values at early morning, a greater decrease in CO2 assimilation rate was observed at midday in senescent leaves than in control leaves. The levels of antheraxanthin and zeaxanthin via the de-epoxidation of violaxanthin increased in senescent flag leaves from predawn to midday. An increase in the xanthophyll cycle pigments relative to chlorophyll was observed in senescent flag leaves. The results suggest that the xanthophyll cycle was activated in senescent leaves due to the decrease in CO2 assimilation capacity and the light intensity for saturation of photosynthesis and that the enhanced formation of antheraxanthin and zeaxanthin at high light may play an important role in the dissipation of excess light energy and help to protect photosynthetic apparatus from photodamage. Our results suggest that the well-known function of the xanthophyll cycle to safely dissipate excess excitation energy is also important for maintaining photosynthetic function during leaf senescence.  相似文献   

8.
In this work we characterize the changes induced by iron deficiency in the pigment composition of pear (Pyrus communis L.) leaves grown under high light intensities in field conditions in Spain. Iron deficiency induced decreases in neoxanthin and β-carotene concomitantly with decreases in chlorophyll a, whereas lutein and carotenoids within the xanthophyll cycle were less affected. Iron deficiency caused major increases in the lutein/chlorophyll a and xanthophyll cycle pigments/chlorophyll a molar ratios. The chlorophyll a/chlorophyll b ratio increased in response to iron deficiency. The carotenoids within the xanthophyll cycle in iron-deficient and in iron-sufficient (control) leaves underwent epoxidations and de-epoxidations in response to ambient light conditions. In control leaves dark-adapted for several hours, most of the xanthophyll cycle pigment pool was in the epoxidated form vio-laxanthin, whereas iron-deficient leaves had significant amounts of zeaxanthin. Iron-deficient leaves also exhibited an increased non-photochemical quenching, supporting the possibility of a role for pigments within the xanthophyll cycle in photoprotection.  相似文献   

9.
Photosynthetic pigment composition and photosystem II (PSII) photochemistry were characterized during the flag leaf senescence of wheat plants grown in the field. During leaf senescence, neoxanthin and beta-carotene decreased concomitantly with chlorophyll, whereas lutein and xanthophyll cycle pigments were less affected, leading to increases in lutein/chlorophyll and xanthophyll cycle pigments/chlorophyll ratios. The chlorophyll a/b ratio also increased. With the progression of senescence, the maximal efficiency of PSII photochemistry decreased only slightly in the early morning (low light conditions), but substantially at midday (high light conditions). Actual PSII efficiency, photochemical quenching and the efficiency of excitation capture by open PSII centres decreased significantly both early in the morning and at midday and such decreases were much greater at midday than in the early morning. At the same time, non-photochemical quenching, zeaxanthin and antheraxanthin contents at the expense of violaxanthin increased both early in the morning and at midday, with a greater increase at midday. The results in the present study suggest that a down-regulation of PSII occurred in senescent leaves and that the xanthophyll cycle plays a role in the protection of PSII from photoinhibitory damage in senescent leaves by dissipating excess excitation energy, particularly when exposed to high light.  相似文献   

10.
The response of sugar beet (Beta vulgaris L.) leaves to iron deficiency can be described as consisting of two phases. In the first phase, leaves may lose a large part of their chlorophyll while maintaining a roughly constant efficiency of photosystem II photochemistry; ratios of variable to maximum fluorescence decreased by only 6%, and photon yields of oxygen evolution decreased by 30% when chlorophyll decreased by 70%. In the second phase, when chlorophyll decreased below a threshold level, iron deficiency caused major decreases in the efficiency of photosystem II photochemistry and in the photon yield of oxygen evolution. These decreases in photosystem II photochemical efficiency were found both in plants dark-adapted for 30 minutes and in plants dark-adapted overnight, indicating that photochemical efficiency cannot be repaired in that time scale. Decreases in photosystem II photochemical efficiency and in the photon yield of oxygen evolution were similar when measurements were made (a) with light absorbed by carotenoids and chlorophylls and (b) with light absorbed only by chlorophylls. Leaves of iron-deficient plants exhibited a room temperature fluorescence induction curve with a characteristic intermediate peak I that increases with deficiency symptoms.  相似文献   

11.
The effects of Fe resupply to Fe-deficient plants have been investigated in hydroponically-grown sugar beet. In the short-term (24 h) after Fe resupply, major changes were observed, although de novo chlorophyll (Chl) synthesis had not begun yet. Approximately 50% of the zeaxanthin was converted into violaxanthin, whereas the actual Photosystem II (PS II) efficiency increased by 69% and non-photochemical quenching (NPQ) and the amount of thermally dissipated energy decreased markedly (by 47% and 40%, respectively). At the same time, photosynthetic rate increased approximately by 50%. From one to two days after Fe resupply, there was a gradual increase in the leaf concentrations of Chl and other photosynthetic pigments, accompanied by a further conversion of zeaxanthin into violaxanthin, increases in actual PS II efficiency and photosynthetic rates and decreases in NPQ and the amount of thermally dissipated energy. At 72-96 h after Fe resupply, leaf pigment concentrations, photosynthetic rates and actual PS II efficiency had increased further, although both photosynthetic rate and leaf pigment concentrations were still lower than those found in Fe-sufficient leaves. Good correlations were observed between the amount of light thermally dissipated by the PS II antenna, NPQ and the antheraxanthin + zeaxanthin concentration after Fe resupply, confirming the photoprotective role of the xanthophyll cycle in Fe-deficient sugar beet leaves. Similar correlations were observed for lutein, suggesting a possible role of this pigment in photoprotection.  相似文献   

12.
Photosynthesis and photoinhibition in field-grown rice (Oryza sativa L.) were examined in relation to leaf age and orientation. Two varieties (IR72 and IR65598-112-2 [BSI206]) were grown in the field in the Philippines during the dry season under highly irrigated, well-fertilized conditions. Flag leaves were examined 60 and 100 d after transplanting. Because of the upright nature of 60-d-old rice leaves, patterns of photosynthesis were determined by solar movements: light falling on the exposed surface in the morning, a low incident angle of irradiance at midday, and light striking the opposite side of the leaf blade in the afternoon. There was an early morning burst of CO2 assimilation and high levels of saturation of photosystem II electron transfer as incident irradiance reached a maximum level. However, by midday the photochemical efficiency increased again almost to maximum. Leaves that were 100 d old possessed a more horizontal orientation and were found to suffer greater levels of photoinhibition than younger leaves, and this was accompanied by increases in the de-epoxidation state of the xanthophyll cycle. Older leaves had significantly lower chlorophyll content but only slightly diminished photosynthesis capacity.  相似文献   

13.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

14.
Photosynthetic rate and quatum efficiency of grapevine (Vitis vinifera L. cv. Sauvignon blanc) leaves were measured under the field with ample soil water supply, and in phytotron with ample supply of water and mineral nutrients, constant air humidity and CO2 concentration, and optimum air temperature, respectively. Under field conditions CO2 assimilation quantum efficiency of leaves reached its maximum in the morning, which was followed by continuous decrease and midday depression. The leaves intercepting more light energy in the morning showed a higher quantum efficiency. Those leaves subjected continuously to strong irradiance exhibited a more obvious and longer midday depression. Reduction of leaf light interception around midday could reduce midday depression. Shaded leaves had a higher quantum efficiency than leaves under direct sunlight. The diurnal changes in photosynthetic rate and quantum efficiency of leaves were shown to be closely related to the variations in mesophyll resistance to CO2. In phytotron experiments the photosynthetic quantum efficiency of leaves was reduced after a certain period of illumination not only at 1200 μmol · m-2 · s-1 PFD, higher than the saturating light of vine leaves (≈1000 μmol · m-2 · s-1), which was caused by "photoinhibition”, but also at 800 and 200μmol · m-2 · s-1, which was similar to "photoinhibition”. But photosynthetic quantum efficiency of leaves exposed continuously to a very weak PFD (100 μmol · m -2 · s-1) remained contant. The diurnal changes in mesophyll resistance to CO2 of vine leaves could be partly related to photoinhibition. It is considered that, under field conditions without soil water limitation, midday depression of vine leaf photosynthesis could be a result of an increase of the mesophyll resistance induced by multiple effects of strong light, high temperature and low humidity. A higher light interception by canopy plane in the morning may be advantageous to exploit higher photosynthetic potentiality of leaves, but a lower light interception in the middle of day may reduce midday depression. The north-south orientation plane can provide optimum light regime and improve photosynthetic environment in vineyards.  相似文献   

15.
To determine whether the net loss of D1 protein is the main cause of photoinhibition of photosynthesis in wheat leaves under field conditions in the absence of any environmental stress other than strong sunlight, the D1 protein content, photosynthetic evolution of oxygen and chlorophyll a fluorescence parameters were measured in field grown wheat leaves. After exposure to midday strong light for about 3 h, apparent photosynthetic quantum efficiency (Φ), Fv/Fm and Fo in wheat leaves declined, and these parameters recovered almost completely 1 h after transfer to the weak light of 30~40 ttmol photons · m-2 · s-1. No evident change in the D1 protein content was observed in the leaves after exposure to midday strong light for 3 h. After 3 hours exposure to strong light, the slow-relaxed fluorescence quenching in the leaves treated with streptomycin (SM) increased much more than that in the control leaves, but there was no effect SM on the recovery of Fv/Fm and F0; dithiothretol (DTT) treatment enhanced photoinhibition of photosynthesis and reduced the D1 protein content in the leaves after exposure to midday strong light. These results indicated that under field conditions with no environmental stress other than strong sunlight, photoinhibition of photosynthesis in wheat leaves was not due to the net loss of D1 protein, and it could be attributed mainly by the increased nonradiative energy dissipation.  相似文献   

16.
Dissipation of absorbed excitation energy as heat, measured by its effect on the quenching of chlorophyll fluorescence, is induced under conditions of excess light in order to protect the photosynthetic apparatus of plants from light-dependent damage. The spectral characteristics of this quenching have been compared to that due to photochemistry in the Photosystem II reaction centre using leaves of Guzmania monostachia. This was achieved by making measurements at 77K when fluorescence emission bands from each type of chlorophyll protein complex can be distinguished. It was demonstrated that photochemistry and non-photochemical dissipation preferentially quench different emission bands and therefore occur by dissimilar mechanisms at separate sites. It was found that photochemistry was associated with a preferential quenching of emission at 688 nm whereas the spectrum for rapidly reversible non-photochemical quenching had maxima at 683 nm and 698 nm, suggesting selective quenching of the bands originating from the light harvesting complexes of Photosystem II. Further evidence that this was occurring in the light harvesting system was obtained from the fluorescence excitation spectra recorded in the quenched and relaxed states.Abbreviations pH transthylakoid pH gradient - Fo minimum level of chlorophyll fluorescence when Photosystem II reaction centres are open - Fm maximum level of fluorescence when Photosystem II reaction centres are closed - Fv variable fluorescence Fm minus Fo - F'o Fo in any quenched state - Fm Fm in any quenched state - LHCII light harvesting complexes of Photosystem II - PSI Photosystem I - PS II Photosystem II - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching of chlorophyll fluorescence that occurs in the presence of a pH  相似文献   

17.
Iron deficiency is known to suppress primary productivity in both marine and freshwater ecosystems. In response to iron deficiency, certain cyanobacteria induce a chlorophyll (Chl)-protein complex, CP43', which is encoded by the isiA gene. The deduced amino-acid sequence of CP43' predicts some structural similarity to the CP43 polypeptide of photosystem II, but the function of CP43' remains uncertain. In order to assess its physiological role, the isiA gene of a cyanobacterium, Synechococcus sp. PCC7942, was inactivated by insertion mutagenesis (giving isiA cells). Compared with isiA cells, under iron deprivation, wild-type cells showed both lower rates of photosystem II-mediated O2 evolution at limiting light irradiances and decreased yields of room temperature Chl fluorescence at various irradiances. These observations strongly suggest that the decreased photosystem II activity in wild-type cells with CP43' is attributable to increased non-radiative dissipation of light energy. In agreement with this hypothesis, isiA cells were more susceptible to photoinhibition of photosynthesis than wild-type cells, resulting in much slower growth rates under iron limitation. Based on these results, we suggest that CP43' functions as a non-radiative dissipator of light energy, thus protecting photosystem II from excessive excitation under iron-deficient conditions.  相似文献   

18.
Abstract: Excitation energy dissipation, including the xanthophyll cycle, during senescence in wheat flag leaves grown in the field was investigated at midday and in the morning. With progress of senescence, photosynthesis (Pn) and actual PSII photochemical efficiency (ΦPSII) decreased markedly at midday. The decrease in extent of Pn was greater than that of ΦPSII. However, there was no significant decline in Pn and ΦPSII observed in the morning, except in leaves 60 days after anthesis. The kinetics of xanthophyll cycle activity, thermal dissipation (NPQ), and qf observed at midday during senescence exhibited two distinct phases. The first phase was characterized by an increase of xanthophyll cycle activity, NPQ, and qf during the first 45 days after anthesis. The second phase took place 45 days after anthesis, characterized by a dramatic decline in the above parameters. However, the qI, observed both at midday and in the morning, always increased along with senescence. A larger proportion of NPQ insensitive to DTT (an inhibitor of the de-epoxidation of V to Z) was also observed in severely senescent leaves. In the morning, only severely senescent leaves showed higher xanthophyll cycle activity, NPQ, qf, and qI. It was demonstrated that, at the beginning of senescence or under low light, wheat leaves were able to dissipate excess light energy via NPQ, depending on the xanthophyll cycle. However, the xanthophyll cycle was insufficient to protect leaves against photodamage under high light, when leaves became severely senescent. The ratio of (Fj - Fo)/(Fp - Fo) increased gradually during the first 45 days after anthesis, but dramatically increased 45 days after anthesis. We propose that another photoprotection mechanism might exist around reaction centres, activated in severely senescent leaves to protect leaves from photodamage.  相似文献   

19.
Cell proliferation, elongation, determination and differentiation mainly take place in the basal 5 mm of a barley leaf, the so-called basiplast. A considerable portion of cDNAs randomly selected from a basiplast cDNA library represented photosynthetic genes such as CP29, RUBISCO-SSU and type I-LHCP II. Therefore, we became interested in the role of the basiplast in establishing photosynthesis. (1) Northern blot analysis revealed expression of photosynthetic genes in the basiplast, although at a low level. Analysis of basiplasts at different developmental stages of the leaves revealed maximal expression of photosynthetic genes during early leaf development. The activity of these genes shows that plastid differentiation involves the development of the photosynthetic apparatus even at this early state of leaf cell expansion. (2) This conclusion was supported by the fact that chlorophylls and carotenoids are synthesized in the basiplast. The qualitative pattern of pigment composition was largely similar to that of fully differentiated green leaves. (3) The transition from proplastids to chloroplasts progressed in the basal 5 mm of the leaf, so that the number of grana lamellae per thylakoid stack increased with distance from the meristem from zero to about five. (4) Photosynthetic function was studied by chlorophyll a-fluorescence measurements. In dark-adapted 8-day-old primary leaves, the fluorescence ratio (FP-Fo)/FP was little decreased in basiplasts as compared to leaf blades. During steady state photosynthesis, the ratio (FM-Fo)/FM was high in leaf blade (0.5), but low in the sheath (0.25) and in the basiplast (0.18), indicating the existence of functional, albeit low light-adapted chloroplasts in the basiplast. (5) Further on, chlorophyll a fluorescence analysis in relation to seedling age revealed efficient photosynthetic performance in the basiplast of 3- to 6-day-old seedlings which later-on differentiates into leaf blade as compared to the basiplast of 7- to 12-day-old seedlings which develops into leaf sheath and finally ceases to grow. The leaf age dependent changes in basiplast photosynthesis were reflected by changes in pigment contents and LHCP II expression both of which also revealed a maximum in the basiplast of 4-day-old seedlings.Abbreviations bas 1 basiplast-associated gene 1 encoding a peroxide reductase - cab chlorophyll a/b binding protein - CP 29 29 kDa chlorophyll binding protein - DIG digoxigenin - EMIP epidermal major intrinsic protein - LHCP II light harvesting complex of Photosystem II - LSU large subunit of Rubisco - NPQ non photochemical chlorophyll a fluorescence quenching - PSI/PS II Photosystem I/II - PQ photochemical chlorophyll a fluorescence quenching - Rubisco Ribulose-1,5-bisphosphate carboxylase - SSU small subunit of Rubisco  相似文献   

20.
Summary We have investigated the diurnal response of photosynthesis and variable photosystem II (PSII) chlorophyll fluorescence at 77 K for thalli of the chlorophyte macroalga, Ulva rotundata, grown in outdoor culture and transplanted to an intertidal sand flat in different seasons. The physiological response in summer indicated synergistic effects of high PFD and aerial exposure, the latter probably attributable to temperature, which usually increased by 8 to 10° C during midday emersion. Except at extreme emersed temperatures in summer (38° C), the light-saturated photosynthesis rate (Pm) did not decline at midday. In contrast, light-limited quantum yield of photosynthetic O2 exchange () and the ratio of variable to maximum fluorescence yield (Fv/Fm) reversibly declined during midday low tides in all seasons. Shade-grown thalli exhibited a fluorescence response suggestive of greater photodamage to PSII, whereas sun-grown thalli had greater photoprotective capacity. The fluorescence decline was smaller when high tide occurred at midday, and was delayed during morning cloudiness. These results suggest that the diurnal response to PFD in this shallow water species is modified by tidal and meteorological factors. U. rotundata has a great capacity for photoprotection which allows it to tolerate and even thrive in the harsh intertidal environment.Abbreviations Fo instantaneous yield of chlorophyll fluorescence - Fm maximum yield of fluorescence - Fv variable yield (Fm–Fo) of fluorescence - PFD photon flux density (400–700 nm) - Pm light-saturated rate of photosynthesis - PSH photosystem II - QA electron acceptor of PSII - light-limited quantum yield of photosynthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号