首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 diabetes is a disorder of dysregulated glucose homeostasis. Normal glucose homeostasis is a complex process involving several interacting mechanisms, such as insulin secretion, insulin sensitivity, glucose production, and glucose uptake. The dysregulation of one or more of these mechanisms due to environmental and/or genetic factors, can lead to a defective glucose homeostasis. Hyperglycemia is managed by augmenting insulin secretion and/or interaction with hepatic glucose production, as well as by decreasing dietary caloric intake and raising glucose metabolism through exercise. Although these interventions can delay disease progression and correct blood glucose levels, they are not able to cure the disease or stop its progression entirely. Better management of type 2 diabetes is sorely needed. Advances in genotyping techniques and the availability of large patient cohorts have made it possible to identify common genetic variants associated with type 2 diabetes through genome-wide association studies (GWAS). So far, genetic variants on 19 loci have been identified. Most of these loci contain or lie close to genes that were not previously linked to diabetes and they may thus harbor targets for new drugs. It is also hoped that further genetic studies will pave the way for predictive genetic screening. The newly discovered type 2 diabetes genes can be classified based on their presumed molecular function, and we discuss the relation between these gene classes and current treatments. We go on to consider whether the new genes provide opportunities for developing alternative drug therapies.Key Words: Type 2 diabetes, drug targets, genetics, personalized medicine.  相似文献   

2.
Yue JT  Lam TK 《Cell metabolism》2012,15(5):646-655
Lipid sensing and insulin signaling in the brain independently triggers a negative feedback system to lower glucose production and food intake. Here, we discuss the underlying molecular and neuronal mechanisms of lipid sensing and insulin signaling in the hypothalamus and how these mechanisms are affected in response to high-fat feeding. We propose that high-fat feeding concurrently disrupts hypothalamic insulin-signaling and lipid-sensing mechanisms and that experiments aimed to restore both insulin action and lipid sensing in the brain could effectively lower glucose production and food intake to restore metabolic homeostasis in type 2 diabetes and obesity.  相似文献   

3.
Ohtsubo K  Takamatsu S  Minowa MT  Yoshida A  Takeuchi M  Marth JD 《Cell》2005,123(7):1307-1321
Pancreatic beta cell-surface expression of glucose transporter 2 (Glut-2) is essential for glucose-stimulated insulin secretion, thereby controlling blood glucose homeostasis in response to dietary intake. We show that the murine GlcNAcT-IVa glycosyltransferase is required for Glut-2 residency on the beta cell surface by constructing a cell-type- and glycoprotein-specific N-glycan ligand for pancreatic lectin receptors. Loss of GlcNAcT-IVa, or the addition of glycan-ligand mimetics, attenuates Glut-2 cell-surface half-life, provoking endocytosis with redistribution into endosomes and lysosomes. The ensuing impairment of glucose-stimulated insulin secretion leads to metabolic dysfunction diagnostic of type 2 diabetes. Remarkably, the induction of diabetes by chronic ingestion of a high-fat diet is associated with reduced GlcNAcT-IV expression and attenuated Glut-2 glycosylation coincident with Glut-2 endocytosis. We infer that beta cell glucose-transporter glycosylation mediates a link between diet and insulin production that typically suppresses the pathogenesis of type 2 diabetes.  相似文献   

4.
Oxidative stress has been implicated as a contributor to both the onset and the progression of diabetes and its associated complications. Some of the consequences of an oxidative environment are the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance, and mitochondrial dysfunction, which can lead ultimately to the diabetic disease state. Experimental and clinical data suggest an inverse association between insulin sensitivity and ROS levels. Oxidative stress can arise from a number of different sources, whether disease state or lifestyle, including episodes of ketosis, sleep restriction, and excessive nutrient intake. Oxidative stress activates a series of stress pathways involving a family of serine/threonine kinases, which in turn have a negative effect on insulin signaling. More experimental evidence is needed to pinpoint the mechanisms contributing to insulin resistance in both type 1 diabetics and nondiabetic individuals. Oxidative stress can be reduced by controlling hyperglycemia and calorie intake. Overall, this review outlines various mechanisms that lead to the development of oxidative stress. Intervention and therapy that alter or disrupt these mechanisms may serve to reduce the risk of insulin resistance and the development of diabetes.  相似文献   

5.
Several decades of epidemiological and clinical research have identified physical inactivity, excessive calorie consumption, and excess weight as common risk factors for both type 2 diabetes mellitus and coronary heart disease. This trio forms the environmental substrate for a now well-recognized metabolic phenotype called the insulin resistance syndrome. Recent data suggest that a high intake of rapidly absorbed carbohydrates, which is characterized by a high glycemic load (a measure of carbohydrate quality and quantity), may increase the risk of coronary heart disease by aggravating glucose intolerance and dyslipidemia. These data also suggest that individuals who are obese and insulin resistant are particularly prone to the adverse effects of a high dietary glycemic load. In addition, data continue to accumulate suggesting the important beneficial effects of physical activity, even at moderate levels, and weight reduction on improving insulin sensitivity and reducing the risk of coronary heart disease. Future metabolic studies should continue to quantify the physiological impact of different foods on serum glucose and insulin, and such information should routinely be incorporated into large-scale and long-term prospective studies, in which the possible interaction effects between diet and other metabolic determinants such as physical activity and obesity can be examined. Until more definitive data are available, replacing refined grain products and potatoes with minimally processed plant-based foods such as whole grains, fruits, and vegetables, and reducing the intake of high glycemic load beverages may offer a simple strategy for reducing the incidence of coronary heart disease.  相似文献   

6.
Intrauterine growth restriction (IUGR) leads to obesity, glucose intolerance, and type 2 diabetes mellitus in the adult. To determine the mechanism(s) behind this "metabolic imprinting" phenomenon, we examined the effect of total calorie restriction during mid- to late gestation modified by postnatal ad libitum access to nutrients (CM/SP) or nutrient restriction (SM/SP) vs. postnatal nutrient restriction alone (SM/CP) on skeletal muscle and white adipose tissue (WAT) insulin-responsive glucose transporter isoform (GLUT4) expression and insulin-responsive translocation. A decline in skeletal muscle GLUT4 expression and protein concentrations was noted only in the SM/SP and SM/CP groups. In contrast, WAT demonstrated no change in GLUT4 expression and protein concentrations in all experimental groups. The altered in utero hormonal/metabolic milieu was associated with a compensatory adaptation that persisted in the adult and consisted of an increase in the skeletal muscle basal plasma membrane-associated GLUT4 concentrations. This perturbation led to no further exogenous insulin-induced GLUT4 translocation, thereby disabling the insulin responsiveness of the skeletal muscle but retaining it in WAT. These changes, which present at birth, collectively maximize basal glucose transport to the compromised skeletal muscle with a relative resistance to exogenous/postprandial insulin. Preservation of insulin responsiveness in WAT may serve as a sink that absorbs postprandial nutrients that can no longer efficiently access skeletal muscle. We speculate that, in utero, GLUT4 aberrations may predict type 2 diabetes mellitus, whereas postnatal nutrient intake may predict obesity, thereby explaining the heterogeneous phenotype of the IUGR adult offspring.  相似文献   

7.
2型糖尿病大鼠模型的建立及其糖代谢特征分析   总被引:79,自引:8,他引:71  
目的 建立一种接近于人类普通型 2型糖尿病大鼠模型。方法  8周龄SD大鼠高热量饮食喂养 2个月后给予小剂量STZ建立 2型糖尿病模型 ,然后进行胰岛素 葡萄糖耐量试验、胰岛免疫组化及其图像分析 ,并与大、小剂量STZ、单纯高热量饮食等各组大鼠相应指标比较。结果 高热量饮食一段时间后给予小剂量STZ的大鼠模型外周胰岛素敏感性降低 ,胰岛素合成和分泌相对于单纯高热量饮食组大鼠降低 ,但仍高于正常对照组。结论 该模型大鼠具有外周胰岛素抵抗和胰岛功能仅轻微受损等特征 ,具有类似人类 2型糖尿病的临床表现 ,有助于该病及其慢性并发症发病机理的研究  相似文献   

8.
Insulin controls fatty acid (FA) release from white adipose tissue (WAT) through direct effects on adipocytes and indirectly through hypothalamic signaling by reducing sympathetic nervous system outflow to WAT. Uncontrolled FA release from WAT promotes lipotoxicity, which is characterized by inflammation and insulin resistance that leads to and worsens type 2 diabetes. Here we tested whether early diet-induced insulin resistance impairs the ability of hypothalamic insulin to regulate WAT lipolysis and thus contributes to adipose tissue dysfunction. To this end we fed male Sprague-Dawley rats a 10% lard diet (high fat diet (HFD)) for 3 consecutive days, which is known to induce systemic insulin resistance. Rats were studied by euglycemic pancreatic clamps and concomitant infusion of either insulin or vehicle into the mediobasal hypothalamus. Short term HFD feeding led to a 37% increase in caloric intake and elevated base-line free FAs and insulin levels compared with rats fed regular chow. Overfeeding did not impair insulin signaling in WAT, but it abolished the ability of mediobasal hypothalamus insulin to suppress WAT lipolysis and hepatic glucose production as assessed by glycerol and glucose flux. HFD feeding also increased hypothalamic levels of the endocannabinoid 2-arachidonoylglycerol after only 3 days. In summary, overfeeding impairs hypothalamic insulin action, which may contribute to unrestrained lipolysis seen in human obesity and type 2 diabetes.  相似文献   

9.
We examined the effects of intake of Korean foxtail millet protein (FMP) on plasma levels of lipid, glucose, insulin, and adiponectin in genetically type 2 diabetic KK-Ay mice. When mice were fed a normal FMP diet or a high-fat-high-sucrose diet containing FMP for 3 weeks, in both experiments plasma concentrations of high-density lipoprotein cholesterol (HDL-cholesterol) and adiponectin increased remarkably in comparison with a casein diet group, whereas concentrations of insulin decreased greatly and that of plasma glucose was comparable to that in the casein diet group. Considering the role of adiponectin, insulin, and HDL-cholesterol in diabetes, atherosclerosis, and obesity, it appears likely that FMP may improve insulin sensitivity and cholesterol metabolism through an increase in adiponectin concentration. Therefore, FMP would serve as another beneficial food component in obesity-related diseases such as type 2 diabetes and cardiovascular diseases.  相似文献   

10.
Insulin resistance is a common phenomenon in obesity and Type 2 diabetes. Common factor important for development of diabetes and insulin resistance is intake of saturated fat. Vanadate treatment improves glucose homeostasis in vivo. The aim of this study was to find out changing of hepatic glucose output in dependence of saturated fat diet and possible direct action of vanadate in cultured hepatocytes. Hepatocytes were isolated by a collagenase perfusion technique and cultured for 24 h in M 199 serum-free medium. The glucose production in hepatocytes isolated from rats on high saturated fat diet was significantly 139% higher comparable to standard controls. Glucagon 100% increased glucose production in hepatocytes from rats on standard diet and 200% in hepatocytes on saturated high fat diet. The addition vanadate significantly decreased basic glucose production and did not influence glucagon stimulated glucose production. Presence of insulin did not influence either glucagon or vanadate effect. High saturated fat diet not only increases insulin resistance but also decreases chances of successful therapy of diabetes.  相似文献   

11.
Leptin enhances insulin sensitivity in addition to reducing food intake and body weight. Recently, amylin, a pancreatic β-cell-derived hormone, was shown to restore a weight-reducing effect of leptin in leptin-resistant diet-induced obesity. However, whether amylin improves the effect of leptin on insulin sensitivity in diet-induced obesity is unclear. Diet-induced obese (DIO) mice were infused with either saline (S), leptin (L; 500 μg·kg?1·day?1), amylin (A; 100 μg·kg?1·day?1), or leptin plus amylin (L/A) for 14 days using osmotic minipumps. Food intake, body weight, metabolic parameters, tissue triglyceride content, and AMP-activated protein kinase (AMPK) activity were examined. Pair-feeding and weight-matched calorie restriction experiments were performed to assess the influence of food intake and body weight reduction. Continuous L/A coadministration significantly reduced food intake, increased energy expenditure, and reduced body weight, whereas administration of L or A alone had no effects. L/A coadministration did not affect blood glucose levels during ad libitum feeding but decreased plasma insulin levels significantly (by 48%), suggesting the enhancement of insulin sensitivity. Insulin tolerance test actually showed the increased effect of insulin in L/A-treated mice. In addition, L/A coadministration significantly decreased tissue triglyceride content and increased AMPKα2 activity in skeletal muscle (by 67%). L/A coadministration enhanced insulin sensitivity more than pair-feeding and weight-matched calorie restriction. In conclusion, this study demonstrates the beneficial effect of L/A coadministration on glucose and lipid metabolism in DIO mice, indicating the possible clinical usefulness of L/A coadministration as a new antidiabetic treatment in obesity-associated diabetes.  相似文献   

12.
13.
Previous work has shown increased insulin sensitivity, increased hepatic insulin clearance and lower postprandial insulin responses following treatment with resistant starch, a type of dietary fibre. The objective of this study was to further explore the effects of resistant starch on insulin secretion. Twelve overweight (BMI 28.2±0.4 kg/m(2)) individuals participated in this randomized, subject-blind crossover study. Participants consumed either 40 g type 2 resistant starch or the energy and carbohydrate-matched placebo daily for four weeks. Assessment of the effect on insulin secretion was made at the end of each intervention using an insulin-modified frequently sampled intravenous glucose tolerance test (FSIVGTT). Insulin and C-peptide concentrations were significantly higher during the FSIVGTT following the resistant starch compared with the placebo. Modelling of the data showed significantly improved first-phase insulin secretion with resistant starch. These effects were observed without any changes to either body weight or habitual food intake. This study showed that just four weeks of resistant starch intake significantly increased the first-phase insulin secretion in individuals at risk of developing type 2 diabetes. Further studies exploring this effect in individuals with type 2 diabetes are required.  相似文献   

14.
Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The β-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the β-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on β-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased β-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3H]-thymidine incorporation, protein abundance, and mRNA expression.  相似文献   

15.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

16.
Insulin action in the central nervous system regulates energy homeostasis and glucose metabolism. To define the insulin-responsive neurons that mediate these effects, we generated mice with selective inactivation of the insulin receptor (IR) in either pro-opiomelanocortin (POMC)- or agouti-related peptide (AgRP)-expressing neurons of the arcuate nucleus of the hypothalamus. While neither POMC- nor AgRP-restricted IR knockout mice exhibited altered energy homeostasis, insulin failed to normally suppress hepatic glucose production during euglycemic-hyperinsulinemic clamps in AgRP-IR knockout (IRΔAgRP) mice. These mice also exhibited reduced insulin-stimulated hepatic interleukin-6 expression and increased hepatic expression of glucose-6-phosphatase. These results directly demonstrate that insulin action in POMC and AgRP cells is not required for steady-state regulation of food intake and body weight. However, insulin action specifically in AgRP-expressing neurons does play a critical role in controlling hepatic glucose production and may provide a target for the treatment of insulin resistance in type 2 diabetes.  相似文献   

17.
Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of beta-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.  相似文献   

18.
Sirtuins: novel targets for metabolic disease in drug development   总被引:1,自引:0,他引:1  
Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes.  相似文献   

19.
Circulating insulin inhibits endogenous glucose production. Here we report that bidirectional changes in hypothalamic insulin signaling affect glucose production. The infusion of either insulin or a small-molecule insulin mimetic in the third cerebral ventricle suppressed glucose production independent of circulating levels of insulin and of other glucoregulatory hormones. Conversely, central antagonism of insulin signaling impaired the ability of circulating insulin to inhibit glucose production. Finally, third-cerebral-ventricle administration of inhibitors of ATP-sensitive potassium channels, but not of antagonists of the central melanocortin receptors, also blunted the effect of hyperinsulinemia on glucose production. These results reveal a new site of action of insulin on glucose production and suggest that hypothalamic insulin resistance can contribute to hyperglycemia in type 2 diabetes mellitus.  相似文献   

20.
伍静  王彬  鲍臻  杨静谊  李维国 《生物磁学》2013,(25):4988-4990,4949
糖尿病是以血糖浓度增高、胰岛素缺乏或作用下降为主要特征的慢性疾病,并能引起脂肪和蛋白质代谢紊乱。为了探索糖尿病的发病机理、血糖的调节机制以及评价等问题,建立能够模拟人类疾病特征的实验动物模型也备受关注。由于II型糖尿病或胰岛素抵抗与糖脂代谢密切相关,肥胖和高能量膳食摄入可增加其发病风险,所以高脂高糖膳食诱导肥胖型的糖尿病动物模型以及在此基础上联合小剂量链脲佐菌素(streptozocin,SZT)的造模方法被广泛应用。本文主要综述了II型糖尿病的机理,并就食物调节在糖尿痛发病过程中的作用和影响,浅谈Ⅱ型糖尿痛的特点和制备过程中的的注意事项,以供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号