首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxidase activity was examined cytochemically in the mucosal epithelium along the length of the digestive tract from the esophagus through the large intestine during the development of the bullfrog, Rana catesbeiana. In the tadpole of this species, cells with peroxidase activity were found abundantly in the esophagus, stomach, and large intestine; and the types of such cells differed according to the region: ciliated cells and mucous cells in the esophagus; ciliated cells in the stomach; and brush cells, absorptive cells, and goblet cells in the large intestine, respectively. After metamorphosis, however, peroxidase activity was observed exclusively in absorptive cells and goblet cells in the large intestine. Peroxidase activity was commonly demonstrated in apical vesicles or granules, to some degree in rough endoplasmic reticulum, and in some elements of the Golgi apparatus. Furthermore, reaction product was also found in mucus covering the luminal surface of such epithelial cells. These findings indicate that peroxidase-positive cells, which may have the ability to synthesize peroxidase as a secretory product, were distributed mainly in three regions of the digestive tract in tadpoles (esophagus, stomach, and large intestine), but were centered in one specific region, the large intestine, after metamorphosis. Concomitantly, the variety of types of peroxidase-positive cells decreased during metamorphosis. Our results indicate that some of the peroxidase in the digestive tract may have a secretory origin and may play a role in the defense against microorganisms.  相似文献   

2.
The alimentary tract of the ammocoete of the lamprey, Petromyzon marinus L., is divisible into three morphologically distinct regions: the oesophagus, the anterior intestine, and the posterior intestine. The epithelium of the oesophagus possesses mucous, ciliated, and columnar cells and appears to be specialized for movement of food particles. The epithelium of the anterior intestine possesses secretory cells with numerous zymogen granules, ciliated cells, and columnar-absorptive cells. Although some absorption occurs in the anterior intestine, the main function of this region seems to be the release of digestive enzymes and the continued movement of food particles. The epithelium of the posterior intestine is entirely comprised of columnar absorptive cells, namely tall (light and dark) columnar and low columnar, and the primary function of this region is one of absorption. The epithelium of the hindgut resembles that of the archinephric duct (Youson and McMillan, '71). The morphology of the alimentary tract of ammocoetes suggests that some differentiation and renewal of cell types may occur in the epithelium of the three regions. Comparison of the alimentary tract of larval lamprey with that of other vertebrates indicates that the gut of the ammocoete represents a less specialized level of vertebrate development.  相似文献   

3.
Using freeze-fracture techniques, tight junctional networks were observed in the human normal bronchial epithelium. They were morphologically classified into three types: type I was a loosely interconnected, most complicated network consisting of 7-11 roughly parallel wavy strands and situated between ciliated cells; type II was a randomly anastomosing, simple network made up of 2-4 strands and present between goblet cells; type III was an irregularly anastomosing network composed of 4-7 strands and located between a ciliated cell and a goblet cell. Type III junctions, when a goblet cell was strongly bulged, were located on the swollen ridge, the upper surface of which was separated by a deep groove from the bulged apical surface, around the lateral surface of the cell at the level of the luminal surface. The possible relation between the orientation of strands of these networks and extra- or intracellular stress was discussed.  相似文献   

4.
Summary In the pelagic larvacean Oikopleura dioica, the epithelium lining the alimentary tract consists of ciliated and unciliated cell types. The ciliated cells also exhibit an apical border of long microvilli. Between the microvilli, the cellular membrane often projects deeply down into the cytoplasm; the membranes of these invaginations and those of apicolateral interdigitations may be associated with one another by tight junctions. Some of these junctions may be autocellular. The tight junctions are seen by freeze-fracture to be very simple in construction, composed of a single row of intramembranous particles, which may be fused into a P-face ridge. There is a dense cytoplasmic fuzz associated with these tight junctions which may extend into adjoining zonula adhaerens-like regions. The invaginations of the apical membranes are, in addition, associated by gap junctions which may also be autocellular. More conventional homocellular and heterocellular tight and gap junctions occur along the lateral borders of ciliated cells and between ciliated and unciliated cells. These gap junctions possess a reduced intercellular cleft and typical P-face connexons arranged in macular plaques, with complementary E-face pits. Both cell types exhibit extensive stacks of basal and lateral interdigitations. The tight junctions found here are unusual in that they are associated with a dense cytoplasmic fuzz which is normally more characteristic of zonulae adhaerentes.  相似文献   

5.
The digestive tract of the tortoise Testudo graeca (Testudines) was investigated by means of light and electron microscopy. The esophagus of T. graeca was lined by two types of epithelium: non-keratinized stratified squamous in the upper portion and stratified columnar in the lower. The lamina propria of the esophagus contained tubular or tubuloacinar glands. The mucosa of the stomach showed similar characteristics to those of other reptiles. The small intestine exhibited longitudinal folds lined by absorptive and goblet cells. The large intestine was lined by columnar mucous cells. Within the lamina propria of the large intestine, masses of 10–15 epithelial cells connecting with the surface epithelium by means of slender cytoplasmic processes were observed. A battery of six lectins (Con-A, PNA, WGA, DBA, SBA, and LTA) was used to identify the epithelial mucins. WGA and DBA reacted with all types of mucous cells throughout the alimentary canal. PNA was only unreactive in the intestine, LTA in the esophagus, and SBA in the large intestine. These results indicate a similar lectin-binding pattern throughout the gut of T. graeca.  相似文献   

6.
Summary Histological and ultrastructural observations of the digestive tract of eight-armed plutei of Dendraster excentricus are reported. The esophagus is divided into two regions. The uppermost is a narrow tube comprised of ciliated cells that assist in transporting food to the more bulbous lower esophagus where food particles are formed into a bolus prior to entering the stomach. The esophagus is surrounded by a network of smooth muscle fibers that are predominantly oriented circumferentially in the upper esophagus, and longitudinally in the lower esophagus. The musculature of the upper esophagus produces peristaltic contractions, whereas contractions of the muscle of the lower esophagus open the cardiac sphincter and force food from the lower esophagus into the stomach. Axons are associated with the ciliated cells and the muscles of the upper esophagus. The cardiac sphincter consists of a ring of myoepithelium, with cross-striated myofibrils oriented around the bases of the cells. The gastric epithelium is comprised of two cell types. Type I cells, which predominate, absorb and store nutrients, and may be the source of secreted digestive enzymes. Type II cells apparently phagocytize and intracellularly digest whole algal cells. The intestine is comprised of relatively unspecialized cells and probably functions primarily as a conductive tube for the elimination of undigested materials.  相似文献   

7.
The ultrastructure of the digestive tract of tornaria larva of enteropneusts was investigated. It showed that the digestive tract consists of three parts: esophagus, stomach, and intestine. The esophagus epithelium consists of two types of multiciliated epithelial cells and solitary muscle cells. Axonal tracts and neurons were found in the ventral wall of the esophagus. The cardiac sphincter contains an anterior band of strongly ciliated cells and a posterior band of cells with long vacuolized processes which partition the sphincter lumen. The stomach consists of three cell types: (1) cells with electron-opaque cytoplasm, bearing a fringed border on their apical sides; (2, 3) sparse cells with electron-light cytoplasm and different patterns of apical microvilli. Cells of the pyloric sphincter bear numerous cilia and almost no microvilli. The intestine consists of three parts. The anterior part is formed of multiciliated cells which bear the fringed border. The middle part consists of flattened cells bearing rare cilia and vast numbers of mace-like microvilli. The posterior part of the intestine is formed of cells bearing numerous cilia and few microvilli. Muscle cells were not found in either stomach or intestine epithelium. One noticed that the structure of the digestive tract of enteropneust tornaria larva differs from that of echinoid pluteus larva.  相似文献   

8.
9.
Light and electron microscopy were used to examine the morphology of the mucosa of the diverticulum, anterior intestine, and transition zone in prefeeding and spontaneously feeding adult lampreys (Petromyzon marinus L.). Absorptive (either types A or B), ciliated, and enteroendocrine cells are present in all regions but the diverticulum and anterior intestine also possess zymogen (secretory) cells. Type A absorptive cells are restricted to the diverticulum and the rostral one-third of the anterior intestine and are characterized by abundant mitochondria and an extensive smooth tubular network. Type B absorptive cells, in the remainder of the anterior intestine and the transition zone, possess small numbers of these organelles but in the transition zone also have inclusion bodies. During feeding, abundant lipid droplets and lipoprotein (VLDL) accumulate in the cytoplasm of both types of absorptive cells and in the lateral intercellular and the perivascular spaces. Lipid is present to a limited extent in ciliated cells and is encountered only rarely in enteroendocrine and zymogen cells. Although the animals are obligate sanguivores, there is little evidence of iron within these mucosal cells. It is suggested that intestinal efficiency displayed by this animal is due in part to ion transport in osmoregulation in type A cells, lipid absorption in types A and B cells, and digestion through enzymes in zymogen cells.  相似文献   

10.
The alimentary canals of Trochonerilla mobilis and Nerillidium troglochaetoides consist of a ventral pharyngeal organ, oesophagus, stomach, intestine, and rectum. Prominent salivary glands lying lateral to the oesophagus discharge their secretions into the buccal cavity. Ciliated canals, the enteronephridia, embedded in the intestinal epithelium, open into the stomach near its border to the intestine. The ventral pharynx comprises a muscle bulb connected to a tonguelike organ by an investing muscle. The whole alimentary canal is ciliated except for the intestine of T. mobilis. The stomach is built up of absorptive cells and posteriorly also of secretory cells, whereas the intestine consists of only one cell type which is considered to be mainly absorptive. A typical microvillar brush border is present only in the intestine of T. mobilis; elsewhere the density of microvilli is low or the cells have irregular apical processes. In N. troglochaetoides the intestine has a ventral ciliary gutter laterally bordered by cells with highly specialized microvilli. The enteronephridia — 3 in N. troglochaetoides and 13 in T. mobilis — are unicellular tubes up to 130 μm long with a microvillar brush border and other cytological features typical for nephridial ducts. These structures are not known in any other polychaete taxon.  相似文献   

11.
为了解银鲳(Pampus argenteus)消化道结构特点与其功能及食性的相关性, 采用解剖、石蜡切片、AB-PAS染色及酶活性检测技术对银鲳消化道的形态、组织结构、黏液细胞分布及消化酶活性进行研究。结果显示, 银鲳的消化道由口咽腔(舌)、食道侧囊、食道、胃及肠构成, 胃肠交界处有很多幽门盲囊。食道侧囊呈椭球形, 食道粗短, 胃呈U型, 肠有多个盘曲, 肠指数为2.03。舌上皮内有少量味蕾及较多黏液细胞。食道侧囊、食道、胃及肠均由黏膜层、黏膜下层、肌层及浆膜组成。食道侧囊内皱襞较发达, 被覆复层扁平上皮, 内含较多黏液细胞, 且以Ⅳ型为主, 皱襞顶端及侧面有内含角质刺的次级突起; 黏膜下层及肌层中有固定皱襞的骨质脚根; 侧囊内胃蛋白酶活性较高。食道内皱襞较高, 被覆复层扁平上皮, 内含较多黏液细胞, 且以Ⅳ型为主。胃内皱襞发达, 被覆单层柱状上皮, 未见黏液细胞分布; 胃腺发达, 胃内蛋白酶活性较高。肠道内褶襞多, 高度呈先下降后上升趋势, 黏液细胞密度前、中肠较高, 后肠较低, 且均以Ⅰ型为主; 肠道内胰蛋白酶、脂肪酶、淀粉酶及碱性磷酸酶活性较高。幽门盲囊组织结构与肠相似。银鲳的消化道结构特点、黏液细胞分布及消化酶活性与其功能及偏肉食的杂食性相适应。  相似文献   

12.
The alimentary canal of typical anurans is remodeled during metamorphosis. We examined the tissue structure of small intestine in tadpoles of the treefrog, Rhacophorus owstoni. The cytoskeletal components of the smooth muscle cells were identified by immunohistochemically with alpha-smooth muscle actin antibody. Before metamorphosis, the smooth muscle fibers are arranged in two layers that are circular and longitudinal in orientation, and are stained markedly brown. During metamorphosis, there was concomitant increase in the number of muscle fibers per unit length of tract in both layers. By the end of the metamorphosis, the alimentary tract are transformed morphologically from the larval to adult form, and the smooth muscle cells are rapidly increasing in number. This study suggests that the structural change of musculature are formed in rearrangements of smooth muscle cells, but no proliferation of these cells with the metamorphosis.  相似文献   

13.
Expression of five zinc transporters (ZnT1, 4, 5, 6, and 7) of the Slc30 family in the mouse gastrointestinal tract was studied by immunohistochemical analysis. Results demonstrated unique expression patterns, levels, and cellular localization among ZnT proteins in the mouse gastrointestinal tract with some overlapping. ZnT1 was abundantly expressed in the epithelium of the esophagus, duodenum of the small intestine, and cecum of the large intestine. ZnT4 was predominantly detected in the large intestine. ZnT5 was mainly expressed in the parietal cell of the stomach and in the absorptive epithelium of the duodenum and jejunum. ZnT6 was predominantly detected in the chief cell of the stomach, columnar epithelial cells of the jejunum, cecum, colon, and rectum. Lastly, ZnT7 was observed in all epithelia of the mouse gastrointestinal tract with the highest expression in the small intestine. Expression of ZnT proteins in the absorptive epithelial cell of the gastrointestinal tract suggests that ZnT proteins may play important roles in zinc absorption and endogenous zinc secretion.  相似文献   

14.
The events in the transformation of the intestine of the larval lamprey into the adult intestine were followed through the seven (1–7) stages of metamorphosis in anadromous Petromyzon marinus L. Light and electron-microscope observations demonstrated that the processes of degeneration, differentiation, and proliferation are involved in the transformation. In the anterior intestine, degeneration of cells and the extrusion of others into the lumen results in the disappearance of secretory (zymogen) cells and the decline in numbers of endocrine and ciliated cells. Larval absorptive cells, with a prominent brush border, are believed to dedifferentiate into unspecialized columnar cells with few microvilli. Degeneration and removal of cells occurs by both autophagy and heterography and cells extruded into the lumen in the anterior intestine are phagocytosed by epithelial cells of the posterior intestine. The loss of epithelial cells during transformation results in the folding and degradation of parts of the basal lamina and in an extensive widening of the lateral intercellular spaces in all parts of the intestine. As metamorphosis is a nontrophic period of the lamprey life cycle, the possible morphological effects of starvation on the intestinal epithelium are discussed. The development of longitudinal folds is a consequence of the events of metamorphic transformation of the intestinal mucosa. Although an interaction between the epithelium and the underlying tissues is believed to be importent, the actual mechanism of fold development is unknown. The intestinal epithelium of adult lampreys develops from surviving cells of the larval (primary) epithelium. Unlike the situation in amphibians, there does not appear to be a group (nest) of undifferentiated larval cells which differentiate into the adult (secondary) epithelium. Instead, in lampreys, columnar cells that persist through the degradative processes seem to be the source of absorptive and ciliated cells and probably are responsible for mucous and secretory cells. Preliminary observations indicate that the intestinal epithelium of feeding adults is specialized into an anterior region which liberates a secretion, absorbs lipid, and possesses the machinery for ion transport. A posterior region absorbs lipid, secretes mucus, and likely is involved in some protein absorption.  相似文献   

15.
Pharynx and intestine   总被引:1,自引:1,他引:0  
The alimentary canal of polychaetes consists of a foregut, midgut, and hindgut. The alimentary canal shows different specializations even in homonomously segmented polychaetes. The foregut gives rise to the buccal cavity, pharnyx and oesophagus, the midgut may be divided into a stomach and the intestine proper. Since polychaetes use a wide spectrum of food sources, structures involved in feeding vary as well and show numerous specializations. In the foregut these specializations may be classified as one of the following types: dorsolateral folds, ventral pharynx, axial muscular pharynx, axial non-muscular proboscis and dorsal pharynx. The latter, typical of oligochaetous Clitellata, occurs rarely in polychaetes. The structure, evolution and phylogenetic importance of these different types are described and discussed. Axial muscular and ventral pharynges may be armed with jaws, sclerotized parts of the pharyngeal cuticle. Terminology, structure, occurrence and development of the jaws are briefly reviewed. Special attention has been paid to the jaws of Eunicida including extinct and extant forms. Conflicting theories about the evolution of the jaws in Eunicida are discussed. The epithelia of the intestine may form a pseudostratified epithelium composed of glandular cells, absorptive cells and ciliated cells or only one cell type having similar functions. A conspicuous feature in the intestine of certain polychaetes is the occurrence of unicellular tubular structures, called enteronephridia. So far these enteronephridia are only known in a few meiofauna species.  相似文献   

16.
The neritid snail Nerita picea is a marine prosobranch mollusc which resides high in the intertidal zone on the Hawaiian Islands. Since other studies have shown considerable variations in molluscan gut histology and the relatively few recent ultrastructural reports have revealed novel cellular structures in the molluscan gastrointestinal tract, this investigation was directed toward ultrastructural clarification of the neritid intestine. Seven principal cell types constituted the intestinal architecture, including absorptive cells, zymogen cells, neural and endocrine cells, myocytes, pigment and gland cells. The intestinal epithelium was composed mainly of tall ciliated (9 plus 2 complement of microtubules) columnar absorptive cells which also possessed microvilli, extensive deposits of non-membrane-bound lipid-like droplets, and large reservoirs of glycogen-like granules. Less frequent, columnar zymogen cells contained numerous large zymogen secretory granules and possessed microvilli but not cilia. Small endocrine-like cells with secretory granules were observed basolaterally between some absorptive cells, resembling mammalian gut endocrine cells. Nerve fibers were prevalent in close association with the epithelial cells. A thin layer of non-striated muscle was present, as well as a serosally located gland composed of storage cells with a granular matrix and large granules.  相似文献   

17.
Summary Two major cell types, goblet and absorptive cells, dominate the epithelial lining of small intestinal villi. We used freezefracture replicas of rat ileal mucosa to examine the possibility that tight junction structure, known to relate to transepithelial resistance, might vary with cell type. Tight junctions between absorptive cells were uniform in structure while those associated with villus goblet cells displayed structural variability. In 23% of villus goblet cell tight junctions the strand count was less than 4 and in 30% the depth was less than 200 nm. In contrast, only 4% of absorptive cell tight junctions had less than 4 strands and only 9% had depth measurements less than 200 nm. Other structural features commonly associated with villus goblet cell tight junctions but less commonly with absorptive cell tight junctions were: deficient strand cross-linking, free-ending abluminal strands, and highly fragmented strands. Bothin vivo ileal segments and everted loops were exposed to ionic lanthanum. Dense lanthanum precipitates in tight junctions and paracellular spaces were restricted to a subpopulation of villus goblet cells and were not found between villus absorptive cells. After exposure of prefixed ileal loops to lanthanum for 1 hour, faint precipitates of lanthanum were found in 14% of tight junctions and paracellular spaces between absorptive cells compared to 42% of tight junctions and paracellular spaces adjacent to villus goblet cells. When tested in Ussing chambers, the methods used for lanthanum exposure did not lower transepithelial resistance. Everted loops exposed to ionic barium and examined by light microscopy showed dense barium precipitates in the junctional zone and region of the paracellular space of villus goblet cells but not in these regions between absorptive cells. However, the macromolecular tracers, microperoxidase, cytochromec and horseradish peroxidase, were excluded from both villus goblet cell and absorptive cell paracellular spaces inin vivo segments. These findings suggest that a subpopulation of villus goblet cells may serve as focal sites of high ionic permeability and contribute to the relatively low resistance to ionic flow which characterizes the small intestinal epithelium.  相似文献   

18.
Earlier studies have shown that two types of septate junction are formed during early sea urchin morphogenesis. One type is the straight, unbranched, double septum septate (SUDS) which is found in the ectodermal layer throughout early development. The second type is formed only in cells which invaginate to become endoderm and to form the digestive tract. This junction is characterized by pleated, anastomosing, single septum septates (PASS). In order to ascertain in which parts of the digestive tract these junctions are formed, we studied exogastrulae because the endoderm is everted and forms constricted areas of the gut which are easily recognizable. Our results show that, in control embryos, SUDS septates are found in the mouth, esophagus and coelom and that PASS septates are found in the stomach, intestine and anus. These junctional types are also found in the same areas in exogastrulae; SUDS septates are found in the stomadeum, esophagus and coelom, and PASS septates are found in the stomach and intestine. The transition from SUDS to PASS junctions takes place within the same time period in exogastrulae as in normal embryos, i.e., from the time of mid-gastrulation through the pluteus stage. These results indicate that septate junction formation in the sea urchin embryo digestive tract may be genetically programmed in terms of both time and spatial location. This program is not altered either by the major dislocation of cells from their normal position within the embryo or from normal contacts with neighboring cells.  相似文献   

19.
Abstract. The appendicularians, planktonic tunicates, possess a specialized, external filtering system that captures food particles <1 μm in size. In this work the alimentary canal of Oikopleura dioica has been studied by serial sections of whole animals and ultrastructure. The gut includes a dorsal esophagus, a bilobed saccular stomach, and a curved intestine, divided into vertical, mid-, and distal intestine (or rectum). No multicellular glands or cellular proliferative centers were found. Three main cell types were recognized, ciliated microvillar cells, globular cells and gastric band cells, with specializations reflecting different physiological roles in the various regions. Ciliated microvillar cells, the most diffuse, are considered to be involved in food propulsion, fecal pellet formation, absorption, and nutrient storage. Pinocytotic features and vacuoles suggest that absorption of macromolecules and intracellular digestion occur in the globular cells of the stomach and rectum. The large gastric band cells of the left lobe have typical features of intense protein synthesis and probably produce enzymes for extracellular digestion. Diffuse interdigitations of many cells enormously increase the plasmalemma surface and may be involved in liquid/ion exchange. Despite the apparent structural simplicity of the gut epithelium, O. dioica efficiently processes food to fulfill the energy requirements of its exceptionally rapid life-cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号