首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to observe the properties of swelling-activated chloride channel (ICl.swell) in mouse cardiac myocytes using patch clamp techniques. In whole-cell recordings, hypotonic solution activated a chloride current that exhibited outward rectification, weak voltage-dependent inactivation, and anion selectivity with permeability sequence of I- > Br- > Cl-. The current was sensitive to Cl- channel blockers tamoxifen, NPPB and DIDS. In single-channel recordings, cell swelling activated a single channel current which showed outward rectification with open probability of 0.76 +/- 0.08 and conductance of 38.1 +/- 2.5 pS at +100 mV under [Cl-] symmetrical condition. I-V relation revealed the reversal potential as expected for a Cl(-)-selective channel. These results suggested that in mouse cardiac myocytes, swelling-activated, outward rectifying chloride channel with a single channel conductance of 38.1 +/- 2.5 pS (at +100 mV under [Cl-] symmetrical condition) underlies the volume regulatory Cl- channel.  相似文献   

2.
The temperature-sensitive transient receptor potential channel, TRPM8, was recently cloned and found to be activated by cold and menthol. Whole-cell recordings show that TRPM8 is permeable to multiple cations and exhibits a strong outward rectification. Here, we examine the mechanism underlying menthol-evoked current rectification of TRPM8 transiently expressed in tsA-201 cells at room temperature ( approximately 25 degrees C). Whole-cell currents (ruptured, bath: Na(+), K(+), Ca(2+), or Ba(2+); pipette: KCl) exhibited a strong outward rectification in the presence of menthol, consistent with previous studies. The outward K(+) current was reduced in the presence of external Ca(2+) or Ba(2+). Single-channel recordings (cell-attached) showed that menthol induced brief channel openings with two conducting states in the voltage range between -80 and +60mV. The small current (i(S)) conducted both monovalent and divalent ions, and the large one (i(L)) predominantly monovalent ions. The i-V plot for Ca(2+) was weakly outward rectifying, whereas those for monovalent ions were linear. The i(S) may result in the divalent ion-induced reduction of the whole-cell outward current. The open probability (P(o)) in all ion conditions tested was low at negative voltages and increased with depolarization, accounting for the small inward currents observed at the whole-cell level. In conclusion, our results indicate that menthol induced steep outward rectification of TRPM8 results from the voltage-dependent open channel probability and the permeating ion-dependent modulation of the unitary channel conductance.  相似文献   

3.
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or)). At a holding potential of -80 mV gamma was 18 pS for both (gp)Cl(or) currents, and at +80 mV gamma was 67 and 40 pS, respectively. Identity as Cl(-) channels was confirmed in excised patches by changing bath ion composition. From reversal potentials, relative permeability of K(+) over Cl(-) (P(K)/P(Cl)) was 0.07 +/- 0.03, with relative permeability of Na(+) over Cl(-) (P(Na)/P(Cl)) = 0.08 +/- 0.04. A second type of Cl(-) channel was seen with linear current-voltage (I-V) relations ((gp)Cl(L)), having subtypes with gamma of 21, 13, and 8 pS. Epinephrine or forskolin increased the number of open (gp)Cl(or) and (gp)Cl(L). Open probabilities (P(o)) of (gp)Cl(or), (gp)Cl(L21), and (gp)Cl(L13) were voltage dependent in cell-attached patches, higher at more positive potentials. Kinetics of (gp)Cl(or) were more rapid with epinephrine activation than with forskolin activation. Epinephrine increased P(o) at the resting membrane potential for (gp)Cl(L13). Secretagogue activation of these Cl(-) channels may contribute to stimulation of electrogenic K(+) secretion across colonic epithelium by increasing basolateral membrane Cl(-) conductance that permits Cl(-) exit after uptake via Na(+)-K(+)-2Cl(-) cotransport.  相似文献   

4.
An iodide (I) and chloride (Cl) channel has been identified in the continuously cultured FRTL-5 thyroid cell line using a cell attached patch clamp technique. The channel is activated by TSH and dibutyryladenosine cyclic monophosphate (Bt2-cAMP) but not by phorbol 12-myristate 13-acetate (TPA). Gluconate can not replace chloride or iodide and the channel is impermeable to Na+,K+ and tetraethylammonium ions. The current-voltage relationship demonstrates that the single channel current is a linear function of the clamp voltage. Single channel currents reversed at a pipette potential close to 0 mV. The mean single channel conductance was 60 pS for Cl- and 50 pS for I-. From the I-V relationship there was a strong outward rectification with Cl-, and a complete block with I-, in the single channel current above +40 mV. The feature of the channel is manifested in the single channel records by four distinct, equally spaced conductance levels. We suggest the channel is important for the transport of I and Cl ions across the apical membrane into the colloid space and is important for hormone synthesis and follicle formation.  相似文献   

5.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

6.
Single acetylcholine-activated channels have been recorded from neurons dissociated from the sympathetic chain of 17-21 day old rats. The mean single channel conductance is 35 pS in normal medium containing 1 mM calcium, and 51 pS in the absence of calcium. The measured current amplitudes are about five times more variable than at the frog endplate, at least in part because the current, while the channel is open, is much noisier than when it is shut. Single activations of the receptor by acetylcholine (ACh) produce a burst of openings; the distribution of the burst length has two components, the longer of which is of primary importance in synaptic transmission. Whole-cell currents, in response to ACh (up to 30 microM), show strong inward rectification with no outward current being detectable. This phenomenon is similar whether the intracellular ion is sodium or cesium, whether or not divalent cations are present, and whether or not atropine is present. Nevertheless, outward single-channel currents (of normal conductance) are detectable in isolated outside-out patches.  相似文献   

7.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

8.
Single potassium channels in the membrane of human malignant glioma cells U-118MG were studied using the technique of patch clamp in cell-attached and inside-out configurations. Three types of potassium channels were found which differed from each other under conditions close to physiological in their conductance and gating characteristics. The lowest-conductance channel (20 pS near the reversal potential) showed a mild outward rectification up to 45 pS at positive voltages and spontaneous modes of high and low activity. At extreme values of potentials its activity was generally low. The intermediate conductance channel had an S-shaped I-V curve, giving a conductance of 63 pS at reversal, and a low and voltage independent opening probability. The high-conductance (215 pS) channel was found to be activated by both membrane potential and Ca2+ ions and blocked by internal sodium at high voltages. The current-voltage curves of all three channel types displayed saturation.  相似文献   

9.
Summary Human peripheral blood monocytes cultured for varying periods of time were studied using whole-cell and single-channel patch-clamp recording techniques. Whole-cell recordings revealed both an outward K current activating at potentials >20 mV and an inwardly rectifying K current present at potentials negative to –60 mV. Tail currents elicited by voltage steps that activated outward current reversed nearE K, indicating that the outward current was due to a K conductance. TheI–V curve for the macroscopic outward current was similar to the mean single-channelI–V curve for the large conductance (240 pS in symmetrical K) calcium-activated K channel present in these cells. TEA and charybdotoxin blocked the whole-cell outward current and the single-channel current. Excised and cell-attached single-channel data showed that calcium-activated K channels were absent in freshly isolated monocytes but were present in >85% of patches from macrophages cultured for >7 days. Only 35% of the human macrophages cultured for >7 days exhibited whole-cell inward currents. The inward current was blocked by external barium and increased when [K] o increased. Inward-rectifying single-channel currents with a conductance of 28 pS were present in cells exhibiting inward whole-cell currents. These single-channel currents are similar to those described in detail in J774.1 cells (L.C. McKinney & E.K. Gallin,J. Membrane Biol. 103:41–53, 1988).  相似文献   

10.
Summary Voltage-dependent K channels could be identified in on-cell and excised patch-clamp records on membranes of isolated plant cell vacuoles. The current through a membrane patch is dominated by a channel population with a conductance of about 121 pS in symmetrical 250mm KCl solution. The single channel adopts at least two conducting levels the 121-pS state being most frequently observed. The channel shows outward rectification, representing a cation flux into the vacuoles. The rectification appears to be caused by a vanishing open probability and a short channel lifetime at hyperpolarizing voltages. A selectivity ratio of potassium over sodium of about 6 was derived as an estimate. Occasionally, an additional population of K channels with a single-channel conductance of approximately 18 pS is observed. This channel type exhibits outward rectification as well.  相似文献   

11.
Using the lipid bilayer technique we have optimized recording conditions and confirmed that alpha human atrial natriuretic peptide [alpha-hANP(1-28)] forms single ion channels. The single channel currents recorded in 250/50 mM KCl cis/trans chambers show that the ANP-formed channels were heterogeneous, and differed in their conductance, kinetic, and pharmacological properties. The ANP-formed single channels were grouped as: (i) H202- and Ba2+-sensitive channel with fast kinetics; the nonlinear current-voltage (I-V) relationship of this channel had a reversal potential (Erev) of -28.2 mV, which is close to the equilibrium potential for K+ (EK = -35 mV) and a maximal slope conductance (gmax) of 68 pS at positive potentials. Sequential ionic substitution (KCl, K gluconate and choline Cl) of the cis solution suggests that the current was carried by cations. The fast channel had three modes (spike mode, burst mode, and open mode) that differed in their kinetics but not in their conductance properties. (ii) A large conductance channel possessing several subconductance levels that showed time-dependent inactivation at positive and negative membrane potentials (Vm). The inactivation ratio of the current at the end of the voltage step (Iss) to the initial current (Ii) activated immediately after the voltage step, (Iss/Ii), was voltage dependent and described by a bell-shaped curve. The maximal current-voltage (I-V) relationship of this channel, which had an Erev of +17.2 mV, was nonlinear and the value of gmax was 273 pS at negative voltages. (iii) A transiently-activated channel: the nonlinear I-V relationship of this channel had an Erev of -29.8 mV and the value of gmax was 160 pS at positive voltages. We propose that the voltage-dependence of the ionic currents and the kinetic parameters of these channel types indicate that if they were formed in vivo and activated by cytosolic factors they could change the membrane potential and the electrolyte homeostasis of the cell.  相似文献   

12.
A Cl- channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 microM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than ECl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]i) was increased above 1 microM. If [Ca2+]i is increased to 800 microM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i; an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 microM [Ca2+]i, while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl- channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.  相似文献   

13.
The voltage-dependent K (KV) channel in Daudi human B lymphoma cells was characterized by using patch-clamp techniques. Whole-cell voltage-clamp experiments demonstrated that cell membrane depolarization induced a transient (time-dependent) outward current followed by a steady-state (time-independent) component. The time-dependent current resembled behavior of the type n channel, such as use dependence and a unique blockade by tetraethylammonium (TEA). Both time-dependent and time-independent currents were blocked by quinine with a similar IC50 (14.2 mM and 12.6 mM). Treatment with antisense oligonucleotide of human Kv1.3 gene significantly reduced both currents by 80%. Single-channel experiments showed that only one type of KV channel was recorded with a unitary conductance of approximately 19 pS. Consistent with whole-cell recordings, the channel activity in cell-attached patches remained in response to prolonged depolarization, and the remaining channel activity was blocked by quinine, but not TEA. Channel activity was scarcely seen in cell-attached patches after antisense treatment. Whole-cell current-clamp data showed that TEA, which blocks only the time-dependent current, caused a slight decrease in the membrane potential. In contrast, quinine and antisense, which block both time-dependent and -independent currents, strongly reduced the membrane potential. These data together suggest that the KV channel in Daudi cells does not completely inactivate and that the remaining channel activity due to this incomplete inactivation appears to be primarily responsible for maintaining the membrane potential.  相似文献   

14.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

15.
The single channel and whole-cell properties of an inward, rectifying potassium current in cultured embryonic chick hepatocytes were studied at 20°C. In cell-attached patches, channels open upon membrane hyperpolarization and are present in about 90% of cellattached patches. With 145 mm potassium in the pipette, inward current has a slope conductance of 80 pS. The conductance is not a linear function of the external potassium concentration. Current saturates at high external potassium and has a Michaelis-Menten affinity constant of 275 mm potassium. Substitution of gluconate for chloride in the external solution has no significant effect on conductance, and the reversal potential shifts approximately 18 mV with a change in external potassium from 72.5 to 145 mm indicating potassium selectivity. Channel openings are characterized by multiple brief closures during a burst. The channel is inhibited by external cesium in a concentration-dependent manner. Block is characterized by an increased frequency of transient closures. Whole-cell dialysis with 145 mm CsCl of cells bathed in 145 mm KCl reveals time-independent inward currents that reverse at 0 mV in response to 200 msecvoltage steps. Although voltage ramps evoke currents that are 75% potassium dependent and cesium sensitive, the mean chord conductance (425 pS) indicates that less than five channels are open at any instant. We suggest that the inwardly rectifying potassium channel is partially inactivated in the dialysed hepatocyte.We thank K. Paula S. Hettiaratchi and Eunice Y. Wang for expert cell isolation and culture technique, and the Natural Sciences and Engineering Research Council of Canada for supporting this work.  相似文献   

16.
Ion channels in rabbit cultured fibroblasts   总被引:2,自引:0,他引:2  
Large outward currents are recorded with the whole-cell patch-clamp technique on depolarization of rabbit cultured fibroblasts. Our findings suggest that these outward currents consist of two voltage-dependent components, one of which also depends on cytoplasmic calcium concentration. Total replacement of external Cl- by the large anion ascorbate does not affect the amplitude of the currents, indicating that both components must be carried by K+. Consistent with these findings with whole-cell currents, in single channel recordings from fibroblasts we found that most patches contain high-conductance potassium-selective channels whose activation depends on both membrane potential and the calcium concentration at the cytoplasmic surface of the membrane. In a smaller number of patches, a second population of high-conductance calcium-independent potassium channels is observed having different voltage-dependence. The calcium- and voltage-dependence suggest that these two channels correspond with the two components of outward current seen in the whole-cell recordings. The single channel conductance of both channels in symmetrical KCl (150 mM) is 260-270 pS. Both channels are highly selective for K+ over both Na+ and Cl-. The conductance of the channels when outward current is carried by Rb+ is considerably smaller than when it is carried by K+. Some evidence is adduced to support the hypothesis that these potassium channel populations may be involved in the control of cell proliferation.  相似文献   

17.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

18.
A single channel current was studied in the membrane of the immature oocyte of the european frog (Rana esculenta) by using the "patch clamp" technique in the "cell attached" configuration. Single channel activity appeared as short outward currents when membrane potential was made positive inside; full activation required seconds to be complete, no inactivation being appreciable. Deactivation (or current block) upon membrane repolarization was so fast that no inward current could be detected in any case. The reversal potential, estimated by interpolating the I/V diagrams, was -30 mV using standard Ringer as electrode filling solution, and the elementary conductance was 95 pS. Neither reversal potential nor elementary conductance were affected by removal of external Ca2+ (Mg2+ or Ba2+ substitution) or external Cl- (methanesulphonate substitution). The reversal potential moved towards positive potentials by substituting external Na+ with K+, the magnitude of the shifts being consistent with a ratio PK/PNa = 6.4. A distinctive property of the current/voltage relation for this K-current is its anomalous bell-shape, the outward current displaying a maximum at membrane potentials around 75 mV with standard Ringer as electrode filling solution and tending to zero with more positive potentials.  相似文献   

19.
Outward K+ currents were recorded from 3-day-old embryonic chick ventricular myocytes using the patch clamp method. Two types of macroscopic outward currents were observed, one with rapid activation and de-activation time courses, and the other displaying a slower activation and long-duration tail currents. A time-dependent inactivation at positive potentials was a feature of the rapidly-activating current, allowing resolution of an early outward current. Single K+ channel currents were recorded using the outside-out patch technique. Two classes of K+ channels, which may contribute to the macroscopic currents, were differentiated on the basis of their conductances and kinetics. One class (ca 20 pS conductance) showed a rapid activation upon depolarization, and the other class (ca 60 pS) had a more delayed activation. A time-dependent inactivation of the rapid-activating, single-channel K+ current was also recorded. The two types of K+ channels contribute outward current during the plateau and promote the repolarization of the action potential, and the slowly de-activating K+ current may also be involved in the electrogenesis of automaticity observed in some of these cells.  相似文献   

20.
Single channel K+ currents from HeLa cells   总被引:3,自引:0,他引:3  
The extracellular patch-clamp technique was used in order to investigate the presence of ionic channels in HeLa cells, a well-known cultured cell type obtained from an epidermoid carcinoma of the cervix. Under Gigohm-seal conditions, discrete current jumps could be observed with patch electrodes containing KCl. These channels were found to be mainly permeable to K+ and showed multiple levels of conductance. From single-channel I-V curve measurements, a strong rectification effect, characterized by a large inward and no detectable outward current, was observed. For negative membrane potentials (0 to -90 mV), the measured current-voltage relationship was found to be mostly linear, corresponding to a single-channel conductance of 40 pS. An analysis of some selected time records has revealed in addition that the probability of the channel to be in the open state was a function of the KCl concentration in the patch pipette.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号