首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurodegenerative disorders and ischemic brain diseases   总被引:17,自引:0,他引:17  
Degeneration and death of neurons is the fundamental process responsible for the clinical manifestations of many different neurological disorders of aging, incuding Alzheimer's disease, Parkinson's disease and stroke. The death of neurons in such disorders involves apoptotic biochemical cascades involving upstream effectors (Par-4, p53 and pro-apoptotic Bcl-2 family members), mitochondrial alterations and caspase activation. Both genetic and environmental factors, and the aging process itself, contribute to intiation of such neuronal apoptosis. For example, mutations in the amyloid precursor protein and presenilin genes can cause Alzheimer's disease, while head injury is a risk factor for both Alzheimer's and Parkinson's diseases. At the cellular level, neuronal apoptosis in neurodegenerative disorders may be triggered by oxidative stress, metabolic compromise and disruption of calcium homeostasis. Neuroprotective (anti-apoptotic) signaling pathways involving neurotrophic factors, cytokines and conditioning responses can counteract the effects of aging and genetic predisposition in experimental models of neurodegenerative disorders. A better understanding of the molecular underpinnings of neuronal death is leading directly to novel preventative and therapeutic approaches to neurodegenerative disorders.  相似文献   

2.
Although all cells in the body require energy to survive and function properly, excessive calorie intake over long time periods can compromise cell function and promote disorders such as cardiovascular disease, type-2 diabetes and cancers. Accordingly, dietary restriction (DR; either caloric restriction or intermittent fasting, with maintained vitamin and mineral intake) can extend lifespan and can increase disease resistance. Recent studies have shown that DR can have profound effects on brain function and vulnerability to injury and disease. DR can protect neurons against degeneration in animal models of Alzheimer's, Parkinson's and Huntington's diseases and stroke. Moreover, DR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which may increase the ability of the brain to resist aging and restore function following injury. Interestingly, increasing the time interval between meals can have beneficial effects on the brain and overall health of mice that are independent of cumulative calorie intake. The beneficial effects of DR, particularly those of intermittent fasting, appear to be the result of a cellular stress response that stimulates the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors such as brain-derived neurotrophic factor (BDNF), protein chaperones such as heat-shock proteins, and mitochondrial uncoupling proteins. Some beneficial effects of DR can be achieved by administering hormones that suppress appetite (leptin and ciliary neurotrophic factor) or by supplementing the diet with 2-deoxy-d-glucose, which may act as a calorie restriction mimetic. The profound influences of the quantity and timing of food intake on neuronal function and vulnerability to disease have revealed novel molecular and cellular mechanisms whereby diet affects the nervous system, and are leading to novel preventative and therapeutic approaches for neurodegenerative disorders.  相似文献   

3.
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.  相似文献   

4.
Cell death is the final common pathway of cognitive decline in Alzheimer's disease (AD). Nervous system growth factors, or neurotrophic factors, are substances naturally produced in the nervous system that support neuronal survival during development and influence neuronal function throughout adulthood. Notably, in animal models, including primates, neurotrophic factors prevent neuronal death after injury and can reverse spontaneous neuronal atrophy in aging. Thus, neurotrophic factor therapy has the potential to prevent or reduce ongoing cell loss in disorders such as AD. The main challenge in clinical testing of neurotrophic factors has been their delivery to the brain in sufficient doses to impact cell function, while restricting their delivery to specific sites to prevent adverse effects from broad distribution. This article reviews progress in evaluating the therapeutic potential of growth factors, from early animal models to human clinical trials currently underway in AD.  相似文献   

5.
The adult brain requires a constant trophic input for appropriate function. Although the main source of trophic factors for mature neurons is considered to arise locally from glial cells and synaptic partners, recent evidence suggests that hormonal-like influences from distant sources may also be important. These include not only relatively well-characterized steroid hormones that cross the brain barriers, but also blood-borne protein growth factors able to cross the barriers and exert unexpected, albeit specific, trophic actions in diverse brain areas. Insulin-like growth factor I (IGF-I) is until now the serum neurotrophic factor whose actions on the adult brain are best-characterized. This is because IGF-I has been known for many years to be present in serum, whereas the presence in the circulation of other more classical neurotrophic factors has only recently been recognized. Thus, new evidence strongly suggests that IGF-I, and other blood-borne neurotrophic factors such as Fibroblast Growth Factor (FGF-2) or the neurotrophins, exert a tonic trophic input on brain cells, providing a mechanism for what we may refer to as neuroprotective surveillance. Protective surveillance includes "first-line" defense mechanisms ranging from blockade of neuronal death after a wide variety of cellular insults to upregulation of neurogenesis when defenses against neuronal death are overcome. Most importantly, surveillance should also encompass modulation of homeostatic mechanisms to prevent neuronal derangement. These will include modulation of basic cellular processes such as metabolic demands and maintainance of cell-membrane potential as well as more complex processes such as regulation of neuronal plasticity to keep neurons able to respond to constantly changing functional demands.  相似文献   

6.
The stimuli for neuronal cell death in neurodegenerative disorders are multi-factorial and may include genetic predisposition, environmental factors, cellular stressors such as oxidative stress and free radical production, bioenergy failure, glutamate-induced excitotoxicity, neuroinflammation, disruption of Ca(2+) -regulating systems, mitochondrial dysfunction and misfolded protein accumulation. Cellular stress disrupts functioning of the endoplasmic reticulum (ER), a critical organelle for protein quality control, leading to induction of the unfolded protein response (UPR). ER stress may contribute to neurodegeneration in a range of neurodegenerative disorders. This review summarizes the molecular events occurring during ER stress and the unfolded protein response and it specifically evaluates the evidence suggesting the ER stress response plays a role in neurodegenerative disorders.  相似文献   

7.
The contribution of iron dysregulation to the etiology of a variety of neuronal diseases comes as no surprise given its necessity in numerous general cellular and neuron‐specific functions, its abundance, and its highly reactive nature. Homeostatic mechanisms such as the iron regulatory protein and hypoxia‐inducible factor pathways are firmly evolutionarily set in place to prevent ‘free’ iron from participating in chemical Fenton and Haber‐Weiss reactions which can result in subsequent generation of toxic hydroxyl radicals. However, given the multiple layers of complexity in cellular iron regulation, disruption of any number of genetic and environmental components can disturb the delicate balance between the various molecular players involved in maintaining an appropriate metabolic iron homeostasis. In this review, we will primarily focus on: (i) the impact of aging and gender on iron dysfunction as these are important criteria in the determination of iron‐related disorders such as Parkinson’s disease (PD), (ii) how iron mismanagement via disruption of cellular entry and exit pathways may contribute to these disorders, and (iii) how the availability of non‐invasive measurement of brain iron may aid in PD diagnosis.  相似文献   

8.
Neurodegenerative diseases (NDs) such as Alzheimer’s and Parkinson’s disease are fatal neurological diseases that can be of idiopathic, genetic, or even infectious origin, as in the case of transmissible spongiform encephalopathies. The etiological factors that lead to neurodegeneration remain unknown but likely involve a combination of aging, genetic risk factors, and environmental stressors. Accumulating evidence hints at an association of viruses with neurodegenerative disorders and suggests that virus-induced neuroinflammation and perturbation of neuronal protein quality control can be involved in the early steps of disease development. In this review, we focus on emerging evidence for a correlation between NDs and viral infection and discuss how viral manipulations of cellular processes can affect the formation and dissemination of disease-associated protein aggregates.  相似文献   

9.
Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects include neurocognitive dysfunction and peripheral neuropathy. These symptoms occur frequently and have not been effectively studied at the cellular or molecular level. Studies of DNA repair may help our understanding of how those cells that are not dividing could succumb to neurotoxicity with the clinical manifestations discussed in the following article.  相似文献   

10.
Calcium and neurodegeneration   总被引:10,自引:0,他引:10  
Mattson MP 《Aging cell》2007,6(3):337-350
When properly controlled, Ca2+ fluxes across the plasma membrane and between intracellular compartments play critical roles in fundamental functions of neurons, including the regulation of neurite outgrowth and synaptogenesis, synaptic transmission and plasticity, and cell survival. During aging, and particularly in neurodegenerative disorders, cellular Ca2+-regulating systems are compromised resulting in synaptic dysfunction, impaired plasticity and neuronal degeneration. Oxidative stress, perturbed energy metabolism and aggregation of disease-related proteins (amyloid beta-peptide, alpha-synuclein, huntingtin, etc.) adversely affect Ca2+ homeostasis by mechanisms that have been elucidated recently. Alterations of Ca2+-regulating proteins in the plasma membrane (ligand- and voltage-gated Ca2+ channels, ion-motive ATPases, and glucose and glutamate transporters), endoplasmic reticulum (presenilin-1, Herp, and ryanodine and inositol triphosphate receptors), and mitochondria (electron transport chain proteins, Bcl-2 family members, and uncoupling proteins) are implicated in age-related neuronal dysfunction and disease. The adverse effects of aging on neuronal Ca2+ regulation are subject to modification by genetic (mutations in presenilins, alpha-synuclein, huntingtin, or Cu/Zn-superoxide dismutase; apolipoprotein E isotype, etc.) and environmental (dietary energy intake, exercise, exposure to toxins, etc.) factors that may cause or affect the risk of neurodegenerative disease. A better understanding of the cellular and molecular mechanisms that promote or prevent disturbances in cellular Ca2+ homeostasis during aging may lead to novel approaches for therapeutic intervention in neurological disorders such as Alzheimer's and Parkinson's diseases and stroke.  相似文献   

11.
12.
Pivotal brain functions, such as neurotransmission, cognition, and memory, decline with advancing age and, especially, in neurodegenerative conditions associated with aging, such as Alzheimer's disease (AD). Yet, deterioration in structure and function of the nervous system during aging or in AD is not uniform throughout the brain. Selective neuronal vulnerability (SNV) is a general but sometimes overlooked characteristic of brain aging and AD. There is little known at the molecular level to account for the phenomenon of SNV. Functional genomic analyses, through unbiased whole genome expression studies, could lead to new insights into a complex process such as SNV. Genomic data generated using both human brain tissue and brains from animal models of aging and AD were analyzed in this review. Convergent trends that have emerged from these data sets were considered in identifying possible molecular and cellular pathways involved in SNV. It appears that during normal brain aging and in AD, neurons vulnerable to injury or cell death are characterized by significant decreases in the expression of genes related to mitochondrial metabolism and energy production. In AD, vulnerable neurons also exhibit down-regulation of genes related to synaptic neurotransmission and vesicular transport, cytoskeletal structure and function, and neurotrophic factor activity. A prominent category of genes that are up-regulated in AD are those related to inflammatory response and some components of calcium signaling. These genomic differences between sensitive and resistant neurons can now be used to explore the molecular underpinnings of previously suggested mechanisms of cell injury in aging and AD.  相似文献   

13.
Neuronal death underlies the symptoms of many human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, stroke, and amyotrophic lateral sclerosis. The identification of specific genetic and environmental factors responsible for these diseases has bolstered evidence for a shared pathway of neuronal death--apoptosis--involving oxidative stress, perturbed calcium homeostasis, mitochondrial dysfunction and activation of cysteine proteases called caspases. These death cascades are counteracted by survival signals, which suppress oxyradicals and stabilize calcium homeostasis and mitochondrial function. With the identification of mechanisms that either promote or prevent neuronal apoptosis come new approaches for preventing and treating neurodegenerative disorders.  相似文献   

14.
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.  相似文献   

15.
Aging is a biological process characterized by impairment of cellular bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses, increased risk of contracting age-associated disorders that affects many tissues, with a more marked effect on brain and heart function. Oxidative stress is widely thought to underpin many aging processes. The mitochondrion is considered the most important cellular organelle to contribute to the aging process, mainly through respiratory chain dysfunction and formation of reactive oxygen species, leading to damage to mitochondrial proteins, lipids and mitochondrial DNA. Furthermore, exposure to oxidants, especially in the presence of Ca(2+), can induce the mitochondrial permeability transition with deleterious effects on mitochondrial function. Cardiolipin plays a central role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps in apoptosis and mitochondrial membrane stability and dynamics. Alterations to cardiolipin structure, content and acyl chain profile have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we focus on the role played by oxidative stress and cardiolipin in mitochondrial bioenergetic alterations associated with brain aging.  相似文献   

16.
Mitochondrial dysfunction and oxidative stress contribute to several neurologic disorders and have recently been implicated in acquired epilepsies such as temporal lobe epilepsy (TLE). Acquired epilepsy is typically initiated by a brain injury followed by a "latent period" whereby molecular, biochemical and other cellular alterations occur in the brain leading to chronic epilepsy. Mitochondrial dysfunction and oxidative stress are emerging as factors that not only occur acutely as a result of precipitating injuries such as status epilepticus (SE), but may also contribute to epileptogenesis and chronic epilepsy. Mitochondria are the primary site of reactive oxygen species (ROS) making them uniquely vulnerable to oxidative damage that may affect neuronal excitability and seizure susceptibility. This mini-review provides an overview of evidence suggesting the role of mitochondrial dysfunction and oxidative stress as acute consequences of injuries that are known to incite chronic epilepsy and their involvement in the chronic stages of acquired epilepsy.  相似文献   

17.
This brief review is concerned with prospects of the role of modulated gene expression in the brain during aging and in two age-related neurological diseases: Parkinson's and Alzheimer's diseases. Two key mechanisms involved in the disturbance of neuronal function during aging, i. e. deafferentation syndromes (as a result of the impairment of afferent influences) and steroid-induced neuronal changes, have been studied. The author suspects that many aspects of cell aging in the brain represent the influence of the environmental factors. The conception of new therapeutic approaches to the treatment of Alzheimer's disease has been developed.  相似文献   

18.
Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors probably contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gene in the hippocampus, a brain region implicated in the pathophysiology of?MD. The same polymorphisms also showed associations with alterations in hippocampal volume and neuronal integrity. Thus, decreased SLC6A15 expression, due to genetic or environmental factors, might alter neuronal circuits related to the susceptibility for MD. Our convergent data from human genetics, expression studies, brain imaging, and animal models suggest a pathophysiological mechanism for MD that may be accessible to drug targeting.  相似文献   

19.
The mRNAs of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) exhibit a similar, though not identical, regional and cellular distribution in the rodent brain. In situ hybridization experiments have shown that BDNF, like NGF, is predominantly expressed by neurons. The neuronal localization of the mRNAs of these two neurotrophic molecules raised the question as to whether neuronal activity might be involved in the regulation of their synthesis. After we had demonstrated that depolarization with high potassium (50 mM) resulted in an increase in the levels of both BDNF and NGF mRNAs in cultures of hippocampal neurons, we investigated the effect of a large number of transmitter substances. Kainic acid, a glutamate receptor agonist, was by far the most effective in increasing BDNF and NGF mRNA levels in the neurons, but neither N-methyl-D-aspartic acid (NMDA) nor inhibitors of the NMDA glutamate receptors had any effect. However, the kainic acid mediated increase was blocked by antagonists of non-NMDA receptors. Kainic acid also elevated levels of BDNF and NGF mRNAs in rat hippocampus and cortex in vivo. These results suggest that the synthesis of these two neurotrophic factors in the brain is regulated by neuronal activity via non-NMDA glutamate receptors.  相似文献   

20.
Apoptotic and antiapoptotic mechanisms in stroke   总被引:22,自引:0,他引:22  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号