首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field experiment was conducted to investigate the influences of 0, 5, 10, 15 Mg ha–1 of wheat (Triticum aestivum) straw, composted sugarcane bagasse residue and farmyard manure on soil physical properties and yield of winter wheat. The experimental design was a split plot with four replicates. The considered physical properties, 1 year after organic matter addition, included aggregate stability, infiltration rate, water retention curve and dry bulk density. Wheat yield and chemical characteristics of wheat grains were measured. Application of organic materials significantly increased wheat yield and increased aggregate stability, infiltration rate, water retained at less than –100 kPa, and decreased soil bulk density. The effectiveness of different organic materials, farmyard manure, composted bagasse and wheat straw, on improving the soil physical properties was similar. Wheat grain and stubble yield progressively increased as the rate of the organic materials increased. The effectiveness of composted bagasse, farmyard manure and wheat straw on improving wheat grain yield was 22, 14 and 3%, and wheat stubble yield was 26, 17 and 4% over the control.  相似文献   

2.
Rapid, specific techniques are essential to monitor the quality of inoculant plant growth‐promoting strains at all stages of manufacture from starter culture to the final product in its carrier medium. In this study, colony immunoblotting was evaluated for the specific detection and enumeration of Citrobacter freundii, one component of a Vietnamese commercial inoculant plant growth‐promoting product used to improve the yield and nutrient efficiency of paddy rice. For quality control of either sterilised or unsterilised carrier media in commercial products colony immunoblotting proved to be a promising tool. Furthermore, it was possible using this technique to measure the survival of this strain in soil and the rhizosphere.  相似文献   

3.
ABSTRACT

The potato tuber moth (PTM) Phthorimaea operculella is a critical potato pest. Larvae infest both foliage and tubers and mature larvae pupate in the soil or other safe places. Cordyceps tenuipes, an entomopathogenic fungus, infect lepidopteran pupae. To determine the effectiveness of this fungus as a biocontrol agent for PTM, we evaluated the time-concentration-mortality (TCM) response of PTM pupae to C. tenuipes using the following bioassays: (1) direct immersion in conidial suspensions, (2) incubation in sterilised or (3) unsterilised soilpremixed with conidia, and (4) incubation in unsterilised soil drenched with conidial suspensions to simulate field conditions. Fungal infection caused 100%, 83.3%, 73.3%, and 85.0% mortality of PTM pupae in assays 1–4, respectively. At 108 conidia/mL or conidia/g concentration, assays 1 and 4 had short lethal times (LT50) of 2.2 and 2.6 days compared with 3.7 and 4.8 days for assays 2 and 3, respectively. On day 7 after inoculation, assays 1 and 4 also had low lethal concentrations (LC50) of 1.69 × 103 conidia/mL and 1.10 × 105 conidia/g compared with those of assays 2 and 3, which showed low virulence, with LC50 of 3.50 × 105 and 3.60 × 106 conidia/mL, respectively. Our results demonstrate that C. tenuipes is a promising candidate for PTM biocontrol at the pupal stage. Drenching the soil surface with conidial suspensions may be the most effective method of field application.  相似文献   

4.
Two plant growth‐promoting rhizobacterial (PGPR) strains, Bacillus subtilis SU47 and Arthrobacter sp. SU18, were found to tolerate 8% NaCl. Wheat co‐inoculated with these two PGPR strains, and grown under different salinity regimes (2–6 dS m?1), showed an increase in dry biomass, total soluble sugars and proline content. Wheat sodium content was reduced under co‐inoculated conditions but not after single inoculation with either strain or in the control. The activity of antioxidant enzymes in wheat leaves decreased under salinity stress after PGPR co‐inoculation, suggesting these PGPR species could be used for amelioration of stress in wheat plants. Activity of three antioxidant enzymes in wheat grown with both PGPR strains was reduced, most notably that of catalase activity at a salinity of 6 dS m?1, when compared with the control. The results indicate that co‐inoculation with B. subtilis and Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth.  相似文献   

5.
The residual N contribution from faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) to microbial biomass and subsequent wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) was studied in a greenhouse experiment. The grain legumes were 15N labelled in situ with a stem feeding method before incorporated into the soil, which enables the determination of N rhizodeposition. Wheat and rape were subsequently grown on the soil containing the grain legume residues (incl. 15N-labelled rhizodeposits) and were harvested either twice at flowering and at maturity or once at maturity, respectively. The average total N uptake of the subsequent crops was influenced by the legume used as precrop and was determined by the residue N input and the N2-fixation capacity of the legume species. The succeeding crops recovered 8.6–12.1% of the residue N at maturity. Similar patterns were found for the microbial biomass, which recovered 8.2–10.6% of the residue N. Wheat and rape recovered about the same amount of residue N. The absolute contribution of soil derived N to the subsequent crops was similar in all treatments and averaged 149 mg N pot–1 at maturity. At flowering 17–23% of the residue derived N was recovered in the subsequent wheat and in the microbial biomass; 70% of the residue N was recovered in the microbial biomass in the flowering stage and decreased to about 50% at maturity. In contrast, the recovery in wheat and rape constituted only 30% at flowering and increased to 50% at maturity in all treatments, indicating that the residual N uptake by the subsequent wheat was apparently supplied by mobilisation of residue N temporarily immobilised in the microbial biomass.  相似文献   

6.
UK crops have a low selenium (Se) status, therefore Se fertilisation of wheat (Triticum aestivum L.) at 10 field sites was investigated and the effect on the content and speciation of Se in soils determined. Soil characterisation was carried out at each field site to determine the soil factors that may influence wheat grain Se concentrations in unfertilised plots. Soil samples were taken after harvest from each treatment to determine the fate and speciation of selenate fertiliser applied to soil. Wheat grain Se concentrations could be predicted from soil Se concentration and soil extractable sulphur (S) using the following regression model: Grain Se?=?a?+?b(total soil Se)?+?c(extractable soil Se) - d(extractable soil S), with 86 % of the variance being accounted for, suggesting that these properties control Se concentrations in grain from unfertilised plots. Extractable soil Se concentrations were low (2.4 – 12.4 µg kg?1) and predominantly consisted of selenite (up to 70 % of extractable Se) and soluble organic forms, whereas selenate was below the detection limit. Little of the added Se, in either liquid or granular form was left in the soil after crop harvest. Se fertilisation up to 20 g ha?1 did not lead to a significant Se accumulation in the soil, suggesting losses of Se unutilised by the crop.  相似文献   

7.
Wheat (Triticum aestivum L.) is one of the most important agricultural crops worldwide. However, water is the most important limiting factor for wheat production. This study was initiated to test water stress environmental effects on grain quality and nutritional value of wheat by using single different water conditions at post-anthesis stage. Further analyses were conducted to examine variations in concentrations and compositions of the bioactive compounds and nutritions in strong-gluten winter wheat subjected to different levels of water deficit during grain filling. For the experiment on the response to different soil water conditions during post-anthesis stage, effects of soil water environment on protein content and composition in the grains were significant. Soil water conditions in this study greatly affected mineral contents in the grains of winter wheat, particularly with regard to the major minerals (P, K, Ca and Mg). Water deficit during grain filling can result in a decrease in lipid contents in wheat grains, which agrees well with experimental findings elsewhere. Concomitantly, a mild water deficit during grain filling would be beneficial to the grain filling and starch compositions, significantly improved bread-making quality. Therefore, it was concluded that good management of wheat field water at post-anthesis stage was helpful to improving grain quality and nutritions relevant to processing and human nutrition. To cite this article: C.-X. Zhao et al., C. R. Biologies 332 (2009).  相似文献   

8.
The aims of this research were to test the influence of surface soil drying on photosynthesis, root respiration and grain yield of spring wheat (Triticum aestivum), and to evaluate the relationship between root respiration and grain yield. Wheat plants were grown in PVC tubes 120 cm in length and 10 cm in diameter. Three water regimes were employed: (a) all soil layers were irrigated close to field water capacity (CK); (b) upper soil layers (0–40 cm from top) drying (UD); (c) lower soil layer (80–120 cm from top) wet (LW). The results showed that although upper drying treatment maintained the highest root biomass, root respiration and photosynthesis rates at anthesis, the root respiration of the former was significantly (P < 0.05) lower than the latter at the jointing stage. There were no differences in water use efficiency or harvest index between plants from the upper drying and well-watered treatment. However, the grain weight for plants in the upper drying treatment was significantly (P< 0.05) higher than that of in well-watered control. The results suggest that reduced root respiration rate and the amount of photosynthates utilized by root respiration in early season growth may also have contributed to improve crop production under soil drying. Reduced root activity and root respiration rate, in the early growth stage, not only increased the photosynthate use efficiency (root respiration rate: photosynthesis ratio), but also grain yield. Rooting into a deeper wet soil profile before grain filling was crucial for spring wheat to achieve a successful seedling establishment and high grain yield.  相似文献   

9.
A rhizosphere fungus was isolated from roots of chilli plants and identified as Aspergillus spp. PPA1. The fungus was tested for its ability to promote the growth of cucumber plants in a pot experiment. Cucumber seeds were sown in sterilised field soil amended with wheat grain inoculum (WGI) of PPA 1 at the rate of 0.5, 1 and 1.5% w/w, and plants were grown for 21 days in a net house. The treatment with PPA1 significantly increased shoot length, shoot fresh weight, shoot dry weight, root length, root fresh weight, root dry weight, plant length, leaf area and leaf chlorophyll content of cucumber plants compared to non-treated control. The growth promotion rate increased with the increasing concentration of inoculum of PPA1 applied to the soil. The fungus was re-isolated from the roots of cucumber plants at higher frequencies. These results suggest that Aspergillus spp. PPA1 is a root colonising plant-growth promoting fungus for cucumber.  相似文献   

10.
The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat (Triticum aestivum) cultivars, a drought sensitive (Longchun 8139-2) and drought tolerant (Dingxi 24) were grown in PVC tubes (120 cm in length and 10 cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly (p < 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2. Compared with Dingxi 24, 0.04 and 0.07 mg glucose m−2 s−1 of additional energy, equivalent to 0.78 and 1.43 J m−2 s−1, was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24, especially under severe drought stress. The drought tolerance cultivar (Dingxi 24), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar (Longchun 8139-2), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.  相似文献   

11.
The efficacy of rodent bait containing the insecticide imidacloprid was evaluated for controlling fleas on the California ground squirrel, Spermophilus beecheyi. The bait was designed to deliver an oral dose of insecticide resulting in flea mortality when obtaining a blood meal. During the five‐week trial, performed at Vandenberg Air Force Base, Santa Barbara County, CA, a spot‐baiting technique was used to apply bait to ground squirrel burrows. Bait was applied six times throughout the trial. Results indicated that the use of a host‐targeted bait was effective in significantly reducing the flea burden on S. beecheyi. Efficacy at reducing flea abundance was near 100% at both day 15 and day 29 of the trial. Use of the bait also reduced the prevalence of flea‐infested S. beecheyi. Our results indicate that the use of rodent bait containing insecticide could provide an effective, economical method of controlling the fleas of S. beecheyi, the primary vectors of human plague in California.  相似文献   

12.
Summary Creosobebush (Larrea tridentata) fine litter was treated with either the general biocide HgCl2 and CuSO4 or water (controls) and buried 5 cm beneath the soil surface in the northern Chihuahuan Desert. The treated litter showed significantly less mass loss than controls during the three month summer-autumn field study; controls lost about 20% of the original mass while treated litter lost less than 2%. In addition, the total nitrogen content of the control litter increased from an initial concentration of about 14.08 g kg-1 to 17.62 g kg-1 dry weight by the end of the study, while treated litter nitrogen content decreased to 13.30 g kg-1. Results suggest abiotic processes other than leaching have little effect on the decomposition of buried litter in this environment.  相似文献   

13.
Grain yields were measured over 2 seasons from a range of field crops following liming and deep ripping an acid and compacted soil in north-eastern Victoria. Lime (2.5 t ha–1) substantially reduced the level of exchangeable Al and exchangeable Mn whilst raising soil pH by about 1.0 unit. The crops grown were 7 cultivars of wheat and one cultivar each of triticale, oats, barley, rapeseed, safflower, field pea, chick pea and lupins. With the exception of lupin, liming the soil increased (p=0.05) the grain yield of all crops and cultivars. With the wheat cultivars there were 2 distinct groups with different tolerance to soil acidity. Wheat, oats, triticale and lupins had higher absolute yields than the other crops. Safflower and chick pea had very low yields without soil amendment. The magnitude of the lime response did not differ between the wheat cultivars (17%) or between any of the crop species (range 9–29%). Deep ripping the soil to break a hard compacted layer resulted in more yield for all the cereals and safflower. The results demonstrate the importance of using crops with tolerance to acid soil conditions as well as gains that can be obtained with ameliorating identifiable soil problems.  相似文献   

14.
Infestation of sterilised or natural soil with Pseudomonas tomato at inoculum concentrations of 102 to 109 propagules/ml inhibited germination of seeds and caused damping-off of tomato cv. VF-198, susceptible to bacterial speck. Infestation with saprophytic P. fluorescens at an inoculum concentration of 109 propagules/ml did not cause any damage. Germination of seeds of tomato cv. Rehovot-13, resistant to P. tomato, was not affected in P. tomato-infested natural soil, but was inhibited when tested in P. tomato-infested, sterilised soil. Tomato plants which were symptomless from sowing to the flowering stage when growing in infested soil had 20–30% less foliage than plants growing in uninfested soil.  相似文献   

15.
Tolerant wheat cultivars yield well when sown in fields infested with the root‐lesion nematode Pratylenchus thornei, which is present in 67% of fields in the subtropical grain region of eastern Australia. Wheat breeding programmes require accurate phenotyping to select germplasm with superior tolerance to P. thornei. This study investigated normalised difference vegetation index (NDVI) as a phenotypic tool to predict the tolerance of wheat cultivars on low and high P. thornei population densities. Three, 2‐year field experiments used a resistant and a susceptible wheat cultivar in the first year to develop low and high P. thornei populations. In the second year, 36 wheat cultivars were sown on these plots. A NTech Greenseeker was used to determine the NDVI of each plot at regular times during the season and grain yield was measured at crop maturity. There was an inverse relationship between P. thornei population densities and the NDVI for intolerant wheat cultivars. Regression analysis showed a highly predictive response between the yield tolerance index and NDVI with R2 ranging from 0.85 (n = 36) to 0.93 (n = 36) for the three experiments. The area under the disease progress curve with respect to NDVI was highly predictive of yield tolerance (R2 = 0.92; n = 36) when there were high populations (9,091 P. thornei/kg), but not when populations were low (578 P. thornei/kg). Tolerant cultivars can be identified by NDVI when sown on soil containing high populations (>2,500 P. thornei/kg) by measurement at approximately 1,000 degree days after sowing. Greenseeker is a valuable tool for wheat breeders to select germplasm with tolerance of P. thornei.  相似文献   

16.
Surface‐sterilised seeds of Lens culinaris cv. Pusa‐6 were soaked in 0 M, 10?6 M, 10?8 M or 10?10 M aqueous solutions of 28‐homobrassinolide (HBR) for 4 h, 8 h or 12 h and planted in the field in a sandy loam soil. Plants were sampled 60, 90 and 120 days after sowing (DAS). Soaking with HBR decreased root length and nodule number per plant but increased nitrate reductase activity (E.C.1.6.6.1). Soaking with HBR also increased grain yield at the final harvest 140 DAS. The greatest increase was obtained with an HBR concentration of 10?8 M.  相似文献   

17.
Wheat–soybean is one of the most dominant cropping systems on the Vertisols of central India. Cultivation of durum wheat in winter season (November to April) has a considerable potential due to congenial climate, while soybean in rainy season (June to October) has witnessed a phenomenal growth in the last two decades in the region. Beside including a legume (soybean) in sequence with a cereal crop (wheat), combined use of available organic sources along with chemical fertilizers may prove beneficial for long-term productivity and sustainability of the system. A long-term experiment was conducted during 1995–2000 on the fine-textured Vertisols at Indore, India to study the effect of combined use of farmyard manure (FYM), poultry manure, vermicompost and biofertilizers (Azotobacter + phosphate solubilizing bacteria) with 0.5 and 1.0 NPK (120 kg N + 26.2 kg P + 33.3 kg K ha−1) on wheat, and residual effect on following soybean. Grain yield of aestivum wheat in the initial 2 years and durum wheat in the later 3 years was significantly increased with 0.5 NPK + poultry manure at 2.5 t ha−1 or FYM at 10 t ha−1 compared with 0.5 NPK alone, and was on par with 1.0 NPK. However, the highest productivity was obtained when these organic sources were applied along with 1.0 NPK. Quality parameters of durum wheat viz protein content, hectolitre weight and sedimentation value showed improvement, and yellow berry content was significantly lower with combined use of NPK + organic sources compared with NPK alone and control. Soybean did not show much response to residual effect of nutrient management treatments applied to wheat. Wheat gave higher profit than soybean, particularly in the later years due to lower grain yields and market price of soybean. However, the superiority of FYM as well as poultry manure along with 1.0 NPK was evident on the overall profitability of the system. Various soil fertility parameters including chemical and biological properties showed conspicuous improvement over the initial status under the treatments of FYM and poultry manure. Sustainability yield index was maximum under 1.0 NPK, followed by 1.0 NPK + poultry manure or FYM. It was concluded that application of available organic sources, particularly FYM and poultry manure along with full recommended dose of NPK fertilizers to wheat was essential for improving productivity, grain quality, profitability, soil health and sustainability of wheat–soybean system.  相似文献   

18.
Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE.  相似文献   

19.
杨宁  赵护兵  王朝辉  张达斌  高亚军 《生态学报》2012,32(15):4827-4835
研究旱作条件下豆科绿肥轮作影响旱地小麦产量变化的作物营养生态机制,对优化旱地作物种植施肥制度,促进水分资源高效利用、土壤培肥、作物增产有重要意义。通过两年定位试验,分析了与不同豆科作物轮作引起的后茬小麦产量变化及其与干物质、氮磷钾养分累积、转移的关系。结果表明:与秋豆轮作的第一季,小麦籽粒产量无显著变化,但第二季小麦产量提高23.4%;与绿豆轮作,两季产量分别降低19.2%和4.4%;与大豆轮作,产量无显著变化。与秋豆轮作增加了小麦花后干物质及氮、磷养分累积,和对照相比分别增加了35.1%,128.8%和14.0%,而与大豆和绿豆轮作花后干物质累积分别降低26.7%和17.0%,花后氮累积分别降低44.2%和24.4%,花后磷累积与对照相比无显著差异。与此对应,秋豆-小麦轮作,其后茬小麦花后干物质及养分累积对产量形成的贡献显著增加,茎叶花前累积氮、磷向籽粒的转移对产量的贡献明显小于大豆-小麦和绿豆-小麦轮作处理。与氮、磷不同,小麦茎叶花前累积钾素向籽粒转移的同时,花后植株钾素没有累积,反而明显损失,其中与秋豆轮作的小麦花后植株钾素损失量较小,为3.8 kg/hm2,籽粒钾素占转移钾的81.0%;休闲或与大豆、绿豆轮作的小麦花后植株钾素损失较多,分别为10.9,12.6和5.5kg/hm2,籽粒钾素占转移钾的52.9%,52.9%和66.8%。与秋豆-小麦轮作处理小麦增产的主要原因是花后植株能累积更多干物质和氮、磷养分,减少了花前累积于茎叶的钾素在花后的损失。  相似文献   

20.
Summary A procedure is described for selection and screening of VA mycorrhizal fungi in pot and field trials. The VA mycorrhizal fungi from 20 farm paddocks with unexpectedly high pasture production were compared withGlomus fasciculatus for ability to stimulate plant growth. The fungi from three soils (F4, F11, and F20) which were 84–142% more effective thanG. fasciculatus at stimulating growth in sterilised soils were then tested for ability to stimulate clover growth in unsterilised soils in pots, and in the field. F4, F11 and F20 were more efficient thanG. fasciculatus and the indigenous mycorrhizal fungi in all except one field soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号