首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many programmes formally engage Australian Indigenous people in land and sea management to provide environmental services. There are also many Indigenous people who ‘look after country’ without rewards or payment because of cultural obligations. We investigated how Indigenous peoples’ mobility in and around two communities (Maningrida and Ngukurr) is affected by their formal or informal engagement in cultural and natural resource management (CNRM). Understanding factors that influence peoples’ mobility is important if essential services are to be provided to communities efficiently. We found that those providing formal CNRM were significantly less likely to stay away from settlements than those ‘looking after their country’ without payment or reward. Paying Indigenous people to engage with markets for CNRM through carbon farming or payments for environmental services (PES) schemes may alter traditional activities and reduce mobility, particularly movements away from communities that extend the time spent overnight on country. This could have both environmental and social consequences that could be managed through greater opportunities for people to engage in formal CNRM while living away from communities and greater recognition of the centrality of culture to all Indigenous CNRM, formal or otherwise.  相似文献   

2.
The evolution of cooperation in social dilemmas has been of considerable concern in various fields such as sociobiology, economics and sociology. It might be that, in the real world, reputation plays an important role in the evolution of cooperation. Recently, studies that have addressed indirect reciprocity have revealed that cooperation can evolve through reputation, even though pairs of individuals interact only a few times. To our knowledge, most indirect reciprocity models have presumed dyadic interaction; no studies have attempted analysis of the evolution of cooperation in large communities where the effect of reputation is included. We investigate the evolution of cooperation in sizable groups in which the reputation of individuals affects the decision-making process. This paper presents the following: (i) cooperation can evolve in a four-person case, (ii) the evolution of cooperation becomes difficult as group size increases, even if the effect of reputation is included, and (iii) three kinds of final social states exist. In medium-sized communities, cooperative species can coexist in a stable manner with betrayal species.  相似文献   

3.
Vukov J  Santos FC  Pacheco JM 《PloS one》2011,6(3):e17939

Background

From the simplest living organisms to human societies, cooperation among individuals emerges as a paradox difficult to explain and describe mathematically, although very often observed in reality. Evolutionary game theory offers an excellent toolbar to investigate this issue. Spatial structure has been one of the first mechanisms promoting cooperation; however, alone it only opens a narrow window of viability.

Methodology/Principal Findings

Here we equip individuals with incipient cognitive abilities, and investigate the evolution of cooperation in a spatial world where retaliation, forgiveness, treason and mutualism may coexist, as individuals engage in Prisoner''s Dilemma games. In the model, individuals are able to distinguish their partners and act towards them based on previous interactions. We show how the simplest level of cognition, alone, can lead to the emergence of cooperation.

Conclusions/Significance

Despite the incipient nature of the individuals'' cognitive abilities, cooperation emerges for unprecedented values of the temptation to cheat, being also robust to invasion by cheaters, errors in decision making and inaccuracy of imitation, features akin to many species, including humans.  相似文献   

4.
5.
New microbial communities often arise through the mixing of two or more separately assembled parent communities, a phenomenon that has been termed “community coalescence”. Understanding how the interaction structures of complex parent communities determine the outcomes of coalescence events is an important challenge. While recent work has begun to elucidate the role of competition in coalescence, that of cooperation, a key interaction type commonly seen in microbial communities, is still largely unknown. Here, using a general consumer-resource model, we study the combined effects of competitive and cooperative interactions on the outcomes of coalescence events. To do so, we simulate coalescence events between pairs of communities with different degrees of competition for shared carbon resources and cooperation through cross-feeding on leaked metabolic by-products (facilitation). We also study how structural and functional properties of post-coalescence communities evolve when they are subjected to repeated coalescence events. We find that in coalescence events, the less competitive and more cooperative parent communities contribute a higher proportion of species to the new community because of their superior ability to deplete resources and resist invasions. Consequently, when a community is subjected to repeated coalescence events, it gradually evolves towards being less competitive and more cooperative, as well as more speciose, robust and efficient in resource use. Encounters between microbial communities are becoming increasingly frequent as a result of anthropogenic environmental change, and there is great interest in how the coalescence of microbial communities affects environmental and human health. Our study provides new insights into the mechanisms behind microbial community coalescence, and a framework to predict outcomes based on the interaction structures of parent communities.  相似文献   

6.
The evolution of cooperative behaviour, whereby individuals enhance the fitness of others at an apparent cost to themselves, represents one of the greatest paradoxes of evolution. Individuals that engage in such cooperative behaviour can, however, be favoured by natural selection if cooperative actions confer higher fitness than alternative actions. To understand the evolution of cooperative behaviour, the direct and indirect genetic benefits that individuals accrue in the present and future must be summed - this can be accomplished without any reference to the colorful vocabulary typically associated with studies of cooperation. When benefits are accrued indirectly through relatives or directly in the future individuals must be able to assess and enhance their probability of accruing those benefits and behave accordingly. We suggest that, in the same way that studies of kin recognition systems improved our understanding of how individuals assess and enhance their probability of accruing indirect benefits, studies of various forms of inheritance and reciprocation recognition systems will improve our understanding of how individuals assess and enhance their probability of accruing future benefits. Recognizing the parallel between studies of indirect fitness and future fitness, at multiple levels of analysis, will move us toward a simpler and more consistent framework for understanding the evolution of cooperative behaviour.  相似文献   

7.
Social evolution theory for microorganisms   总被引:2,自引:0,他引:2  
Microorganisms communicate and cooperate to perform a wide range of multicellular behaviours, such as dispersal, nutrient acquisition, biofilm formation and quorum sensing. Microbiologists are rapidly gaining a greater understanding of the molecular mechanisms involved in these behaviours, and the underlying genetic regulation. Such behaviours are also interesting from the perspective of social evolution - why do microorganisms engage in these behaviours given that cooperative individuals can be exploited by selfish cheaters, who gain the benefit of cooperation without paying their share of the cost? There is great potential for interdisciplinary research in this fledgling field of sociomicrobiology, but a limiting factor is the lack of effective communication of social evolution theory to microbiologists. Here, we provide a conceptual overview of the different mechanisms through which cooperative behaviours can be stabilized, emphasizing the aspects most relevant to microorganisms, the novel problems that microorganisms pose and the new insights that can be gained from applying evolutionary theory to microorganisms.  相似文献   

8.
Human cooperation is typically coordinated by institutions, which determine the outcome structure of the social interactions individuals engage in. Explaining the Neolithic transition from small‐ to large‐scale societies involves understanding how these institutions co‐evolve with demography. We study this using a demographically explicit model of institution formation in a patch‐structured population. Each patch supports both social and asocial niches. Social individuals create an institution, at a cost to themselves, by negotiating how much of the costly public good provided by cooperators is invested into sanctioning defectors. The remainder of their public good is invested in technology that increases carrying capacity, such as irrigation systems. We show that social individuals can invade a population of asocials, and form institutions that support high levels of cooperation. We then demonstrate conditions where the co‐evolution of cooperation, institutions, and demographic carrying capacity creates a transition from small‐ to large‐scale social groups.  相似文献   

9.
We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c>hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak-selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g=h=l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix.  相似文献   

10.
Evolutionary graph theory is a well established framework for modelling the evolution of social behaviours in structured populations. An emerging consensus in this field is that graphs that exhibit heterogeneity in the number of connections between individuals are more conducive to the spread of cooperative behaviours. In this article we show that such a conclusion largely depends on the individual-level interactions that take place. In particular, averaging payoffs garnered through game interactions rather than accumulating the payoffs can altogether remove the cooperative advantage of heterogeneous graphs while such a difference does not affect the outcome on homogeneous structures. In addition, the rate at which game interactions occur can alter the evolutionary outcome. Less interactions allow heterogeneous graphs to support more cooperation than homogeneous graphs, while higher rates of interactions make homogeneous and heterogeneous graphs virtually indistinguishable in their ability to support cooperation. Most importantly, we show that common measures of evolutionary advantage used in homogeneous populations, such as a comparison of the fixation probability of a rare mutant to that of the resident type, are no longer valid in heterogeneous populations. Heterogeneity causes a bias in where mutations occur in the population which affects the mutant''s fixation probability. We derive the appropriate measures for heterogeneous populations that account for this bias.  相似文献   

11.
Microbes can engage in social interactions ranging from cooperation to warfare. Biofilms are structured, cooperative microbial communities. Like all cooperative communities, they are susceptible to invasion by selfish individuals who benefit without contributing. However, biofilms are pervasive and ancient, representing the first fossilized life. One hypothesis for the stability of biofilms is spatial structure: Segregated patches of related cooperative cells are able to outcompete unrelated cells. These dynamics have been explored computationally and in bacteria; however, their relevance to eukaryotic microbes remains an open question. The complexity of eukaryotic cell signaling and communication suggests the possibility of different social dynamics. Using the tractable model yeast, Saccharomyces cerevisiae, which can form biofilms, we investigate the interactions of environmental isolates with different social phenotypes. We find that biofilm strains spatially exclude nonbiofilm strains and that biofilm spatial structure confers a consistent and robust fitness advantage in direct competition. Furthermore, biofilms may protect against killer toxin, a warfare phenotype. During biofilm formation, cells are susceptible to toxin from nearby competitors; however, increased spatial use may provide an escape from toxin producers. Our results suggest that yeast biofilms represent a competitive strategy and that principles elucidated for the evolution and stability of bacterial biofilms may apply to more complex eukaryotes.  相似文献   

12.
Punishing defectors is an important means of stabilizing cooperation. When levels of cooperation and punishment are continuous, individuals must employ suitable social standards for defining defectors and for determining punishment levels. Here we investigate the evolution of a social reaction norm, or psychological response function, for determining the punishment level meted out by individuals in dependence on the cooperation level exhibited by their neighbors in a lattice-structured population. We find that (1) cooperation and punishment can undergo runaway selection, with evolution towards enhanced cooperation and an ever more demanding punishment reaction norm mutually reinforcing each other; (2) this mechanism works best when punishment is strict, so that ambiguities in defining defectors are small; (3) when the strictness of punishment can adapt jointly with the threshold and severity of punishment, evolution favors the strict-and-severe punishment of individuals who offer slightly less than average cooperation levels; (4) strict-and-severe punishment naturally evolves and leads to much enhanced cooperation when cooperation without punishment would be weak and neither cooperation nor punishment are too costly; and (5) such evolutionary dynamics enable the bootstrapping of cooperation and punishment, through which defectors who never punish gradually and steadily evolve into cooperators who punish those they define as defectors.  相似文献   

13.

Background

The evolutionary origin of cooperation among unrelated individuals remains a key unsolved issue across several disciplines. Prominent among the several mechanisms proposed to explain how cooperation can emerge is the existence of a population structure that determines the interactions among individuals. Many models have explored analytically and by simulation the effects of such a structure, particularly in the framework of the Prisoner''s Dilemma, but the results of these models largely depend on details such as the type of spatial structure or the evolutionary dynamics. Therefore, experimental work suitably designed to address this question is needed to probe these issues.

Methods and Findings

We have designed an experiment to test the emergence of cooperation when humans play Prisoner''s Dilemma on a network whose size is comparable to that of simulations. We find that the cooperation level declines to an asymptotic state with low but nonzero cooperation. Regarding players'' behavior, we observe that the population is heterogeneous, consisting of a high percentage of defectors, a smaller one of cooperators, and a large group that shares features of the conditional cooperators of public goods games. We propose an agent-based model based on the coexistence of these different strategies that is in good agreement with all the experimental observations.

Conclusions

In our large experimental setup, cooperation was not promoted by the existence of a lattice beyond a residual level (around 20%) typical of public goods experiments. Our findings also indicate that both heterogeneity and a “moody” conditional cooperation strategy, in which the probability of cooperating also depends on the player''s previous action, are required to understand the outcome of the experiment. These results could impact the way game theory on graphs is used to model human interactions in structured groups.  相似文献   

14.
When humans engage in social interactions, they are often uncertain about what the possible outcomes are. Because of this, highly sophisticated cooperation strategies may not be very effective. Indeed, some models instead predict the emergence of ‘social heuristics’: simple cooperation strategies that perform well across a range of different situations. Here, we put these predictions to the test in a large-scale interactive decision making experiment. We confronted participants (mostly Belgian university students) with a broad range of cooperative interactions, systematically varying the uncertainty participants had about the consequences of cooperating. As expected, we find that uncertainty about the payoff consequences of cooperation causes individuals to use social heuristics. Additionally, these heuristics directly cause a marked increase in cooperation compared to the treatment without uncertainty, even in situations where cooperation can never be beneficial. These findings provide a new explanation for why human social behavior often violates the standard predictions of economic and evolutionary theory.  相似文献   

15.
Understanding the ultimate and proximate mechanisms that favour cooperation remains one of the greatest challenges in the biological and social sciences. A number of theoretical studies have suggested that competition between groups may have played a key role in the evolution of cooperation within human societies, and similar ideas have been discussed for other organisms, especially cooperative breeding vertebrates. However, there is a relative lack of empirical work testing these ideas. Our experiment found, in public goods games with humans, that when groups competed with other groups for financial rewards, individuals made larger contributions within their own groups. In such situations, participants were more likely to regard their group mates as collaborators rather than competitors. Variation in contribution among individuals, either with or without intergroup competition, was positively correlated with individuals' propensity to regard group mates as collaborators. We found that the levels of both guilt and anger individuals experienced were a function of their own contributions and those of their group mates. Overall, our results are consistent with the idea that the level of cooperation can be influenced by proximate emotions, which vary with the degree of intergroup competition.  相似文献   

16.
Exploitation in cooperative interactions both within and between species is widespread. Although it is assumed to be costly to be exploited, mechanisms to control exploitation are surprisingly rare, making the persistence of cooperation a fundamental paradox in evolutionary biology and ecology. Focusing on between-species cooperation (mutualism), we hypothesize that the temporal sequence in which exploitation occurs relative to cooperation affects its net costs and argue that this can help explain when and where control mechanisms are observed in nature. Our principal prediction is that when exploitation occurs late relative to cooperation, there should be little selection to limit its effects (analogous to “tolerated theft” in human cooperative groups). Although we focus on cases in which mutualists and exploiters are different individuals (of the same or different species), our inferences can readily be extended to cases in which individuals exhibit mixed cooperative-exploitative strategies. We demonstrate that temporal structure should be considered alongside spatial structure as an important process affecting the evolution of cooperation. We also provide testable predictions to guide future empirical research on interspecific as well as intraspecific cooperation.  相似文献   

17.
Costly punishment prevails in intergroup conflict   总被引:1,自引:0,他引:1  
Understanding how societies resolve conflicts between individual and common interests remains one of the most fundamental issues across disciplines. The observation that humans readily incur costs to sanction uncooperative individuals without tangible individual benefits has attracted considerable attention as a proximate cause as to why cooperative behaviours might evolve. However, the proliferation of individually costly punishment has been difficult to explain. Several studies over the last decade employing experimental designs with isolated groups have found clear evidence that the costs of punishment often nullify the benefits of increased cooperation, rendering the strong human tendency to punish a thorny evolutionary puzzle. Here, we show that group competition enhances the effectiveness of punishment so that when groups are in direct competition, individuals belonging to a group with punishment opportunity prevail over individuals in a group without this opportunity. In addition to competitive superiority in between-group competition, punishment reduces within-group variation in success, creating circumstances that are highly favourable for the evolution of accompanying group-functional behaviours. We find that the individual willingness to engage in costly punishment increases with tightening competitive pressure between groups. Our results suggest the importance of intergroup conflict behind the emergence of costly punishment and human cooperation.  相似文献   

18.
In this paper, we present a cultural evolutionary model in which norms for cooperation and punishment are acquired via two cognitive mechanisms: (1) payoff-biased transmission-a tendency to copy the most successful individual; and (2) conformist transmission-a tendency to copy the most frequent behavior in the population. We first show that if a finite number of punishment stages is permitted (e.g. two stages of punishment occur if some individuals punish people who fail to punish non-cooperators), then an arbitrarily small amount of conformist transmission will stabilize cooperative behavior by stabilizing punishment at some n -th stage. We then explain how, once cooperation is stabilized in one group, it may spread through a multi-group population via cultural group selection. Finally, once cooperation is prevalent, we show how prosocial genes favoring cooperation and punishment may invade in the wake of cultural group selection.  相似文献   

19.
Indirect reciprocity potentially provides an important means for generating cooperation based on helping those who help others. However, the use of ‘image scores’ to summarize individuals’ past behaviour presents a dilemma: individuals withholding help from those of low image score harm their own reputation, yet giving to defectors erodes cooperation. Explaining how indirect reciprocity could evolve has therefore remained problematic. In all previous treatments of indirect reciprocity, individuals are assigned potential recipients and decide whether to cooperate or defect based on their reputation. A second way of achieving discrimination is through partner choice, which should enable individuals to avoid defectors. Here, I develop a model in which individuals choose to donate to anyone within their group, or to none. Whereas image scoring with random pairing produces cycles of cooperation and defection, with partner choice there is almost maximal cooperation. In contrast to image scoring with random pairing, partner choice results in almost perfect contingency, producing the correlation between giving and receiving required for cooperation. In this way, partner choice facilitates much higher and more stable levels of cooperation through image scoring than previously reported and provides a simple mechanism through which systems of helping those who help others can work.  相似文献   

20.
There are two key characteristic of animal and human societies: (1) degree heterogeneity, meaning that not all individual have the same number of associates; and (2) the interaction topology is not static, i.e. either individuals interact with different set of individuals at different times of their life, or at least they have different associations than their parents. Earlier works have shown that population structure is one of the mechanisms promoting cooperation. However, most studies had assumed that the interaction network can be described by a regular graph (homogeneous degree distribution). Recently there are an increasing number of studies employing degree heterogeneous graphs to model interaction topology. But mostly the interaction topology was assumed to be static. Here we investigate the fixation probability of the cooperator strategy in the prisoner's dilemma, when interaction network is a random regular graph, a random graph or a scale-free graph and the interaction network is allowed to change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号