首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EM Lee  TT Trinh  HJ Shim  SY Park  TT Nguyen  MJ Kim  YH Song 《DNA Repair》2012,11(9):741-752
ATR and Chk1 are protein kinases that perform major roles in the DNA replication checkpoint that delays entry into mitosis in response to DNA replication stress by hydroxyurea (HU) treatment. They are also activated by ionizing radiation (IR) that induces DNA double-strand breaks. Studies in human tissue culture and Xenopus egg extracts identified Claspin as a mediator that increased the activity of ATR toward Chk1. Because the in vivo functions of Claspin are not known, we generated Drosophila lines that each contained a mutated Claspin gene. Similar to the Drosophila mei-41/ATR and grp/Chk1 mutants, embryos of the Claspin mutant showed defects in checkpoint activation, which normally occurs in early embryogenesis in response to incomplete DNA replication. Additionally, Claspin mutant larvae were defective in G2 arrest after HU treatment; however, the defects were less severe than those of the mei-41/ATR and grp/Chk1 mutants. In contrast, IR-induced G2 arrest, which was severely defective in mei-41/ATR and grp/Chk1 mutants, occurred normally in the Claspin mutant. We also found that Claspin was phosphorylated in response to HU and IR treatment and a hyperphosphorylated form of Claspin was generated only after HU treatment in mei-41/ATR-dependent and tefu/ATM-independent way. In summary, our data suggest that Drosophila Claspin is required for the G2 arrest that is induced by DNA replication stress but not by DNA double-strand breaks, and this difference is probably due to distinct phosphorylation statuses.  相似文献   

2.
PR-Set7 is a histone methyltransferase that specifically monomethylates histone H4 lysine 20 (K20) and is essential for cell proliferation. Our results show that in PR-Set7 mutants, the DNA damage checkpoint is activated. This phenotype is manifested by reduction in both the mitotic and the S phase indexes, a delay in the progression through early mitosis, and strong reduction of cyclin B. Furthermore, in a double mutant of PR-Set7 and mei-41 (the fly ATR orthologue), the abnormalities of mitotic progression and the cyclin B protein level were rescued. PR-Set7 also showed a defect in chromosome condensation that was enhanced in the double mutant. We therefore propose that monomethylated H4K20 is involved in the maintenance of proper higher order structure of DNA and is consequently essential for chromosome condensation.  相似文献   

3.
Wang Y  Hu F  Elledge SJ 《Current biology : CB》2000,10(21):1379-1382
At the end of the cell cycle, cyclin-dependent kinase (CDK) activity is inactivated to allow mitotic exit [1]. A protein phosphatase, Cdc14, plays a key role during mitotic exit in budding yeast by activating the Cdh1 component of the anaphase-promoting complex to degrade cyclin B (Clb) and inducing the CDK inhibitor Sic1 to inactivate Cdk1 [2]. To prevent mitotic exit when the cell cycle is arrested at G2/M, cells must prevent CDK inactivation. In the spindle checkpoint pathway, this is accomplished through Bfa1/Bub2, a heteromeric GTPase-activating protein (GAP) that inhibits Clb degradation by keeping the G protein Tem1 inactive [3-5]. Tem1 is required for Cdc14 activation. Here we show that in budding yeast, BUB2 and BFA1 are also required for the maintenance of G2/M arrest in response to DNA damage and to spindle misorientation. cdc13-1 bub2 and cdc13-1 bfa1 but not cdc13-1 mad2 double mutants rebud and reduplicate their DNA at the restrictive temperature. We also found that the delay in mitotic exit in mutants with misoriented spindles depended on BUB2 and BFA1, but not on MAD2. We propose that Bfa1/Bub2 checkpoint pathway functions as a universal checkpoint in G2/M that prevents CDK inactivation in response to cell-cycle delay in G2/M.  相似文献   

4.
The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.  相似文献   

5.
The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when it is disrupted yeast cells have the same phenotype as the previously isolated mad1 mutants: they fail to delay the metaphase to anaphase transition in response to microtubule depolymerization. MAD1 is predicted to encode a 90-kD coiled-coil protein. Anti-Mad1p antibodies give a novel punctate nuclear staining pattern and cell fractionation reveals that the bulk of Mad1p is soluble. Mad1p becomes hyperphosphorylated when wild-type cells are arrested in mitosis by benomyl treatment, or by placing a cold sensitive tubulin mutant at the restrictive temperature. This modification does not occur in G1- arrested cells treated with benomyl or in cells arrested in mitosis by defects in the mitotic cyclin proteolysis machinery, suggesting that Mad1p hyperphosphorylation is a step in the activation of the spindle assembly checkpoint. Analysis of Mad1p phosphorylation in other spindle assembly checkpoint mutants reveals that this response to microtubule- disrupting agents is defective in some (mad2, bub1, and bub3) but not all (mad3, bub2) mutant strains. We discuss the possible functions of Mad1p at this cell cycle checkpoint.  相似文献   

6.
Krishnan R  Pangilinan F  Lee C  Spencer F 《Genetics》2000,156(2):489-500
The spindle assembly checkpoint-mediated mitotic arrest depends on proteins that signal the presence of one or more unattached kinetochores and prevents the onset of anaphase in the presence of kinetochore or spindle damage. In the presence of either damage, bub2 cells initiate a preanaphase delay but do not maintain it. Inappropriate sister chromatid separation in nocodazole-treated bub2 cells is prevented when mitotic exit is blocked using a conditional tem1(c) mutant, indicating that the preanaphase failure in bub2 cells is a consequence of events downstream of TEM1 in the mitotic exit pathway. Using a conditional bub2(tsd) mutant, we demonstrate that the continuous presence of Bub2 protein is required for maintaining spindle damage-induced arrest. BUB2 is not required to maintain a DNA damage checkpoint arrest, revealing a specificity for spindle assembly checkpoint function. In a yeast two-hybrid assay and in vitro, Bub2 protein interacts with the septin protein Cdc3, which is essential for cytokinesis. These data support the view that the spindle assembly checkpoint encompasses regulation of distinct mitotic steps, including a MAD2-directed block to anaphase initiation and a BUB2-directed block to TEM1-dependent exit.  相似文献   

7.
8.
The relationship between the DNA replication and spindle checkpoints of the cell cycle is unclear, given that in most eukaryotes, spindle formation occurs only after DNA replication is complete. Fission yeast rad3 mutant cells, which are deficient in DNA replication checkpoint function, enter, progress through, and exit mitosis even when DNA replication is blocked. In contrast, the entry of cds1 mutant cells into mitosis is delayed by several hours when DNA replication is inhibited. We show here that this delay in mitotic entry in cds1 cells is due in part to activation of the spindle checkpoint protein Mad2p. In the presence of the DNA replication inhibitor hydroxyurea (HU), cds1 mad2 cells entered and progressed through mitosis earlier than did cds1 cells. Overexpression of Mad2p or inactivation of Slp1p, a regulator of the anaphase-promoting complex, also rescued the checkpoint defect of HU-treated rad3 cells. Rad3p was shown to be involved in the physical interaction between Mad2p and Slp1p in the presence of HU. These results suggested that Mad2p and Slp1p act downstream of Rad3p in the DNA replication checkpoint and that Mad2p is required for the DNA replication checkpoint when Cds1p is compromised.  相似文献   

9.
Cdc55, a B-type regulatory subunit of protein phosphatase 2A, has been implicated in mitotic spindle checkpoint activity and maintenance of sister chromatid cohesion during metaphase. The spindle checkpoint is composed of two independent pathways, one leading to inhibition of the metaphase-to-anaphase transition by checkpoint proteins, including Mad2, and the other to inhibition of mitotic exit by Bub2. We show that Cdc55 is a negative regulator of mitotic exit. A cdc55 mutant, like a bub2 mutant, prematurely releases Cdc14 phosphatase from the nucleolus during spindle checkpoint activation, and premature exit from mitosis indirectly leads to loss of sister chromatid cohesion and inviability in nocodazole. The role of Cdc55 is separable from Bub2 and inhibits release of Cdc14 through a mechanism independent of the known negative regulators of mitotic exit. Epistasis experiments indicate Cdc55 acts either downstream or independent of the mitotic exit network kinase Cdc15. Interestingly, the B-type cyclin Clb2 is partially stable during premature activation of mitotic exit in a cdc55 mutant, indicating mitotic exit is incomplete.  相似文献   

10.
The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.  相似文献   

11.
Hwang HS  Song K 《Genetics》2002,161(2):595-609
During mitosis, genomic integrity is maintained by the proper coordination of mitotic events through the spindle checkpoint. The bifurcated spindle checkpoint blocks cell cycle progression at metaphase by monitoring unattached kinetochores and inhibits mitotic exit in response to the incorrect orientation of the mitotic spindle. Bfa1p is a spindle checkpoint regulator of budding yeast in the Bub2p checkpoint pathway for proper mitotic exit. We have isolated a novel Bfa1p interacting protein named Ibd2p in the budding yeast Saccharomyces cerevisiae. We found that IBD2 (Inhibition of Bud Division 2) is not an essential gene but its deletion mutant proceeded through the cell cycle in the presence of microtubule-destabilizing drugs, thereby inducing a sharp decrease in viability. In addition, overexpression of Mps1p caused partial mitotic arrest in ibd2Delta as well as in bub2Delta, suggesting that IBD2 encodes a novel component of the spindle checkpoint downstream of MPS1. Overexpression of Ibd2p induced mitotic arrest with increased levels of Clb2p in wild type and mad2Delta, but not in deletion mutants of BUB2 and BFA1. Pds1p was also stabilized by the overexpression of Ibd2p in wild-type cells. The mitotic arrest defects observed in ibd2Delta in the presence of nocodazole were restored by additional copies of BUB2, BFA1, and CDC5, whereas an extra copy of IBD2 could not rescue the mitotic arrest defects of bub2Delta and bfa1Delta. The mitotic arrest defects of ibd2Delta were not recovered by MAD2, or vice versa. Analysis of the double mutant combinations ibd2Deltamad2Delta, ibd2Deltabub2Delta, and ibd2Deltadyn1Delta showed that IBD2 belongs to the BUB2 epistasis group. Taken together, these data demonstrate that IBD2 encodes a novel component of the BUB2-dependent spindle checkpoint pathway that functions upstream of BUB2 and BFA1.  相似文献   

12.
Polo-like kinase 1 (Plk1) plays a role in numerous events in mitosis, but how the multiple functions of Plk1 are separated is poorly understood. We studied regulation of Plk1 through two putative phosphorylation residues, Ser-137 and Thr-210. Using phospho-specific antibodies, we found that Thr-210 phosphorylation precedes Ser-137 phosphorylation in vivo, the latter occurring specifically in late mitosis. We show that expression of two activating mutants of these residues, S137D and T210D, results in distinct mitotic phenotypes. Whereas expression of both phospho-mimicking mutants as well as of the double mutant leads to accelerated mitotic entry, further progression through mitosis is dramatically different: the T210D mutant causes a spindle assembly checkpoint-dependent delay, whereas the expression of the S137D mutant or the double mutant results in untimely activation of the anaphase-promoting complex/cyclosome (APC/C) and frequent mitotic catastrophe. Using nonphosphorylatable Plk1-S137A and Plk1-T210A mutants, we show that both sites contribute to proper mitotic progression. Based on these observations, we propose that Plk1 function is altered at different stages of mitosis through consecutive posttranslational events, e.g., at Ser-137 and Thr-210. Furthermore, our data show that uncontrolled Plk1 activation can uncouple APC/C activity from spindle assembly checkpoint control.  相似文献   

13.
We investigated mitotic delay during replication arrest (the S-M checkpoint) in DT40 B-lymphoma cells deficient in the Chk1 or Chk2 kinase. We show here that cells lacking Chk1, but not those lacking Chk2, enter mitosis with incompletely replicated DNA when DNA synthesis is blocked, but only after an initial delay. This initial delay persists when S-M checkpoint failure is induced in Chk2-/- cells with the Chk1 inhibitor UCN-01, indicating that it does not depend on Chk1 or Chk2 activity. Surprisingly, dephosphorylation of tyrosine 15 did not accompany Cdc2 activation during premature entry to mitosis in Chk1-/- cells, although mitotic phosphorylation of cyclin B2 did occur. Previous studies have shown that Chk1 is required to stabilize stalled replication forks during replication arrest, and strikingly, premature mitosis occurs only in Chk1-deficient cells which have lost the capacity to synthesize DNA as a result of progressive replication fork inactivation. These results suggest that Chk1 maintains the S-M checkpoint indirectly by preserving the viability of replication structures and that it is the continued presence of such structures, rather than the activation of Chk1 per se, which delays mitosis until DNA replication is complete.  相似文献   

14.
It has been reported previously that both Cdk1 and Cdk2 phosphorylate Chk1 in a cell-cycle dependent manner. Cdk-mediated phosphorylation is required for efficient activation of Chk1 and checkpoint proficiency in response to DNA damage. Here, we demonstrate that Cdk-mediated phosphorylation is also required for replication stress induced Chk1 activation and S/M checkpoint proficiency. Re-introduction of Chk1 mutant (S286A/S301A) into Chk1 deficient cells is capable of restraining mitosis in cells with completely unreplicated DNA, but the mitotic delay at later stage of the cell cycle is largely impaired. The mutation strongly attenuates aphidicolin induced Chk1 activation without altering the S-phase dependent Chk1 activation. These data indicate that Cdk-mediated phosphorytion is required for efficient Chk1 activation and multiple checkpoint proficiency.  相似文献   

15.
In the presence of double strand breaks, DNA damage checkpoint halts cell cycle progression. However, cells ultimately escape the checkpoint arrest and re-enter cell cycle in the presence of irreparable DNA damage. cdc5-ad was identified as a mutant that fails to adapt to the cell cycle arrest induced by DNA damage checkpoint. In budding yeast, Cdc5 protein kinase is a component of both MEN and FEAR pathways that are required for mitotic exit. It remains unclear whether the adaptation defect of cdc5-ad mutant cells is related to the function of Cdc5 in mitotic exit. Here we present evidence indicating that cdc5-ad mutant cells exhibit defects in mitotic exit. cdc5-ad mutant cells are sensitive to high dosage of Amn1, a negative regulator of MEN. It also shows synthetic growth defects with mutants in MEN pathway. Moreover, mutants in FEAR pathway exhibit defects in DNA damage adaptation. Thus, we conclude that the compromised mitotic exit pathway contributes to DNA damage adaptation defects in cdc5-ad mutant cells.  相似文献   

16.
DeRyckere D  Smith CL  Martin GS 《Genetics》1999,151(4):1445-1457
The fission yeast cdc18(+) gene is required for both initiation of DNA replication and the mitotic checkpoint that normally inhibits mitosis in the absence of DNA replication. The cdc18(+) gene product contains conserved Walker A and B box motifs. Studies of other ATPases have shown that these motifs are required for nucleotide binding and hydrolysis, respectively. We have observed that mutant strains in which either of these motifs is disrupted are inviable. The effects of these mutations were examined by determining the phenotypes of mutant strains following depletion of complementing wild-type Cdc18. In both synchronous and asynchronous cultures, the nucleotide-hydrolysis motif mutant (DE286AA) arrests with a 1C-2C DNA content, and thus exhibits no obvious defects in entry into S phase or in the mitotic checkpoint. In contrast, in cultures synchronized by hydroxyurea arrest and release, the nucleotide-binding motif mutant (K205A) exhibits the null phenotype, with 1C and <1C DNA content, indicating a block in entry into S phase and loss of checkpoint control. In asynchronous cultures this mutant exhibits a mixed phenotype: a percentage of the population displays the null phenotype, while the remaining fraction arrests with a 2C DNA content. Thus, the phenotype exhibited by the K205A mutant is dependent on the cell-cycle position at which wild-type Cdc18 is depleted. These data indicate that both nucleotide binding and hydrolysis are required for Cdc18 function. In addition, the difference in the phenotypes exhibited by the nucleotide-binding and hydrolysis motif mutants is consistent with a two-step model for Cdc18 function in which nucleotide binding and hydrolysis are required for distinct aspects of Cdc18 function that may be executed at different points in the cell cycle.  相似文献   

17.
Tange Y  Niwa O 《Genetics》2008,179(2):785-792
The core proteins of the spindle assembly checkpoint (SAC), Mads, Bubs, and Mps1, first identified in the budding yeast, are thought to be functionally and structurally conserved through evolution. We found that fission yeast Bub3 is dispensable for SAC, as bub3 null mutants blocked mitotic progression when spindle formation was disrupted. Consistently, the bub3 mutation only weakly affected the stability of minichromosome Ch16 compared with other SAC mutants. Fission yeast Rae1 has sequence homology with Bub3. The bub3 rae1 double mutant and rae1 single mutant did not have defective SAC, suggesting that these genes do not have overlapping roles for SAC. Observations of living cells revealed that the duration of the mitotic prometaphase/metaphase was longer in the bub3 mutant and was Mad2 dependent. Further, the bub3 mutant was defective in sister centromere association during metaphase. Together, these findings suggest that fission yeast Bub3 is required for normal spindle dynamics, but not for SAC.  相似文献   

18.
Saccharomyces cerevisiae dbf4 and cdc7 cell cycle mutants block initiation of DNA synthesis (i.e., are iDS mutants) at 37 degrees C and arrest the cell cycle with a 1C DNA content. Surprisingly, certain dbf4 and cdc7 strains divide their chromatin at 37 degrees C. We found that the activation of the Cdc28 mitotic protein kinase and the Dbf2 kinase occurred with the correct relative timing with respect to each other and the observed division of the unreplicated chromatin. Furthermore, the division of unreplicated chromatin depended on a functional spindle. Therefore, the observed nuclear division resembled a normal mitosis, suggesting that S. cerevisiae commits to M phase in late G1 independently of S phase. Genetic analysis of dbf4 and cdc7 strains showed that the ability to restrain mitosis during a late G1 block depended on the genetic background of the strain concerned, since the dbf4 and cdc7 alleles examined showed the expected mitotic restraint in other backgrounds. This restraint was genetically dominant to lack of restraint, indicating that an active arrest mechanism, or checkpoint, was involved. However, none of the previously described mitotic checkpoint pathways were defective in the iDS strains that carry out mitosis without replicated DNA, therefore indicating that the checkpoint pathway that arrests mitosis in iDS mutants is novel. Thus, spontaneous strain differences have revealed that S. cerevisiae commits itself to mitosis in late G1 independently of entry into S phase and that a novel checkpoint mechanism can restrain mitosis if cells are blocked in late G1. We refer to this as the G1/M-phase checkpoint since it acts in G1 to restrain mitosis.  相似文献   

19.
In most eukaryotic cells, DNA replication is confined to S phase of the cell cycle [1]. During this interval, S-phase checkpoint controls restrain mitosis until replication is complete [2]. In budding yeast, the anaphase inhibitor Pds1p has been associated with the checkpoint arrest of mitosis when DNA is damaged or when mitotic spindles have formed aberrantly [3] [4], but not when DNA replication is blocked with hydroxyurea (HU). Previous studies have implicated the protein kinase Mec1p in S-phase checkpoint control [5]. Unlike mec1 mutants, pds1 mutants efficiently inhibit anaphase when replication is blocked. This does not, however, exclude an essential S-phase checkpoint function of Pds1 beyond the early S-phase arrest point of a HU block. Here, we show that Pds1p is an essential component of a previously unsuspected checkpoint control system that couples the completion of S phase with mitosis. Further, the S-phase checkpoint comprises at least two distinct pathways. A Mec1p-dependent pathway operates early in S phase, but a Pds1p-dependent pathway becomes essential part way through S phase.  相似文献   

20.
A semipermissive growth condition was defined for a Schizosaccharomyces pombe strain carrying a thermosensitive allele of DNA polymerase delta (pol delta ts03). Under this condition, DNA polymerase delta is semidisabled and causes a delay in S-phase progression. Using a genetic strategy, we have isolated a panel of mutants that enter premature mitosis when DNA replication is incomplete but which are not defective for arrest in G2/M following DNA damage. We characterized the aya14 mutant, which enters premature mitosis when S phase is arrested by genetic or chemical means. However, this mutant is sensitive to neither UV nor gamma irradiation. Two genomic clones, rad26+ and cds1+, were found to suppress the hydroxyurea sensitivity of the aya14 mutant. Genetic analysis indicates that aya14 is a novel allele of the cell cycle checkpoint gene rad26+, which we have named rad26.a14. cds1+ is a suppressor which suppresses the S-phase feedback control defect of rad26.a14 when S phase is inhibited by either hydroxyurea or cdc22, but it does not suppress the defect when S phase is arrested by a mutant DNA polymerase. Analyses of rad26.a14 in a variety of cdc mutant backgrounds indicate that strains containing rad26.a14 bypass S-phase arrest but not G1 or late S/G2 arrest. A model of how Rad26 monitors S-phase progression to maintain the dependency of cell cycle events and coordinates with other rad/hus checkpoint gene products in responding to radiation damage is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号