首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
2,4-D和激动素(KT)均显著降低烟草愈伤组织中IAA氧化酶和细胞分裂素氧化酶的活性,KT的影响更显著.在MS中的愈伤组织IAA氧化酶活性最高,MS 2,4-D中的次之,MS KT和MS 2,4-D KT中的最低.愈伤组织在MS中继代6 d时,细胞分裂素氧化酶活性出现明显的高峰,在其它3种培养基中则没有.  相似文献   

2.
细胞分裂素氧化酶   总被引:3,自引:1,他引:3  
对细胞分裂素氧化酶生化特征及生理意义研究进展作了介绍。  相似文献   

3.
BA(benzyl adenine)专一性地促进离体黄瓜子叶的扩张。为了研究 BA 的作用机理,我们采用间接 EIISA 和 HPLC 的方法测定了子叶扩张过程中内源玉米素(Z)和玉米素核苷(ZR)含量的变化。离体黄瓜(Cucumis sativus,津研4号)子叶用10mg/l 的 BA 培养,72小时之后,处理子叶鲜重的增加比对照高70%。Z+ZR 在 BA 处理的子叶中有大量的积累。结果表明 BA 可能诱发了黄瓜子叶中的细胞分裂素生物合成和代谢的某些基因。  相似文献   

4.
BA(benzyl adenine)专一性地促进离体黄瓜子叶的扩张。为了研究BA的作用机理,我们采用间接EIISA和HPLC的方法测定了子叶扩张过程中内源玉米素 (Z) 和玉米素核苷(ZR)含量的变化。离体黄瓜(Cucumis sativus,津研4号)子叶用100mg/1的BA培养,72小时之后,处理子叶鲜重的增加比对照高70%。Z+ZR在BA处理的子叶中有大量的积累。结果表明BA可能诱发了黄瓜子叶中的细胞分裂素生物合成和代谢的某些基因。  相似文献   

5.
土壤水分胁迫加重,小麦旗叶、根系和籽粒中ABA含量迅速达到高峰,然后又快速降低;胁迫愈重,细胞分裂素(iPAs)峰值出现愈早,尔后下降,从而加速了植株衰老进程,导致产量降低。但在轻度水分胁迫上下上述性状与对照无显著差异。  相似文献   

6.
7.
水分胁迫下荔枝叶片过氧化物酶和IAA氧化酶活性的变化   总被引:14,自引:0,他引:14  
以适应山地栽培的抗旱性较强的东刘1号和适应河边栽培的抗旱性较弱的陈紫2年生荔枝(Litchi chinensis Sonn.)实生苗为试验材料,研究了水分胁迫下叶片细胞胞质,与(细胞)壁以离子键结合和壁以共价键结合的过氧化的酶(POD)和IAA氧化酶活性的变化。结果表明:在叶片中POD主要是以与壁以离子键结合的POD存在,占总活性的51.15%-52.15%,其次是细胞胞质POD,占44.20%-44.74%,与壁以共价键结合的POD活性最低,仅占3.44%-3.65%。与POD不同,IAA氧化酶绝大多数存在于细胞胞质中,占总活性的88.93%-89.29%,其次是少量的与壁以离子键结合的IAA氧化酶,占7.32%-7.63%,与壁以共价键结合的IAA氧化酶活性最低,仅占3.39%-3.44%;2个品种间差异不明显。水分胁迫下,叶片细胞胞质以及与壁以离子键和壁以共价键结合的POD和IAA氧化酶(比)活性均上升,抗旱笥较强的品种上升的幅度均大于抗旱性较弱的品种。  相似文献   

8.
两种细胞分裂素对大白菜子叶再生的影响   总被引:5,自引:0,他引:5  
以华阳三号(HY)和鲁白六号(LB)大白菜具柄子叶为外植体,建立了高频率不定芽再生体系,并比较了所使用的2种细胞分裂素作用的异同。MS 0.25mg/L TDZ O.5mg/L NAA 5mg/L AgN03组合中,HY的再生频率达到98.8%,在MS 2mg/L BA 0.5mg/L NAA 5mg/L AgN03组合中,HY和LB的再生频率分别为92.8%和82.4%。TDZ具有比BA高的细胞分裂活性,含有TDZ的培养基中,子叶再生频率高、出芽迅速、芽点多。子叶再生过程中,硝酸银的作用必不可少。  相似文献   

9.
整株干旱降低盐棉46号叶片中的IAA总量,叶龄愈小下降愈多。幼叶中IAA总量的下降主要是结合态IAA减少的结果。气干和-1.7MPa PEG溶液渗透胁迫处理也降低离体成熟叶片的IAA总量,其变化与叶片含水量呈直线相关(r=0.905)。整株干旱处理提高各叶片的过氧化物酶活性,叶龄愈小提高愈多,但IAA氧化酶活性无显著变化。离体和整株干旱时IAA总量的下降,可能是过氧化物酶活性增加所致。  相似文献   

10.
水分胁迫对棉花叶片中IAA含量,IAA氧化酶和过氧物...   总被引:40,自引:1,他引:40  
  相似文献   

11.
Cytokinin dehydrogenase (CKX) is responsible for regulating the endogenous cytokinin content by oxidative removal of the side chain and seven distinct genes, AtCKX1 to AtCKX7, code for the enzyme in Arabidopsis thaliana. The recombinant enzyme AtCKX2 was produced in Saccharomyces cerevisiae after expressing the corresponding gene from a plasmid (pDR197) or following chromosomal integration, under either the constitutive promoter PMA1 or the inducible promoter GAL1. The recombinant protein was purified from yeast culture media using a sequence of chromatographic steps. The purified enzyme had a molecular mass of 61 kDa and a typical flavoprotein spectrum. The specific activity of the enzyme was 87.8 μkat g−1, with isopentenyladenine as a substrate and 2,3-dimethoxy-5-methyl-p-benzoquinone as an electron acceptor. The pH optimum lay between 7.0 and 8.0, depending on the electron acceptor used. AtCKX2 reacts both with isoprenoid and aromatic cytokinins, the activity with isoprenoid cytokinins being two to three orders of magnitude higher. AtCKX2 prefers p-quinones and the synthetic dye 2,6-dichlorophenol indophenol as electron acceptors, although low reactivity with oxygen can also be observed. This study presents the first purification and characterization of the enzyme from Arabidopsis thaliana.  相似文献   

12.
Cytokinin oxidase: Biochemical features and physiological significance   总被引:10,自引:0,他引:10  
The catabolism of cytokinin in plant tissues appears to be due, in large part, to the activity of a specific enzyme, cytokinin oxidase. This enzyme catalyses the oxidation of cytokinin substrates bearing unsaturated isoprenoid side chains, using molecular oxygen as the oxidant. In general, substrate specificity is highly conserved and cytokinin substrates bearing saturated or cyclic side chains do not serve as substrates for most cytokinin oxidases tested to date. Despite variation in molecular properties of the enzyme from a number of higher plants, oxygen is always required for the reaction. Cytokinin oxidases from several sources have been shown to be glycosylated. Cytokinin oxidase activity appears to be universally inhibited by cytokinin-active urea derivatives. Auxin has been reported to act as an allosteric regulator which increases activity of the enzyme.
Cytokinin oxidase activity is subject to tight regulation. Levels of the enzyme are controlled by a mechanism sensitive to cytokinin supply. The up-regulation of cytokinin oxidase expression in response to exogenous application of cytokinin suggests that the metabolic fate of exogenously applied cytokinins may not accurately mimic that of the endogenous compounds.
Cytokinin oxidase is believed to be a copper-containing amine oxidase (EC 1.4.3.6). Considerable evidence strongly supports a common mechanism for amine oxidases. It is possible that advances in understanding of other amine oxidases could be extrapolated to increase our understanding of cytokinin oxidase at the molecular level. This is discussed with reference to what is currently known about the catalytic mechanism of the enzyme. The possibility of pyrroloquinoline quinone, or a closely related compound, as a redox cofactor of cytokinin oxidase is considered, as are the implications of the glycosylated nature of the enzyme for its regulation and compartmentalisation within the cell.  相似文献   

13.
    
Cytokinins are hormones that are involved in plant growth and development. They are irreversibly degraded by cytokinin oxidases/dehydrogenases, flavoenzymes which contain a covalently bound flavine adenine dinucleotide (FAD) cofactor. Cytokinin oxidase from Zea mays (ZmCKO1) was overexpressed in the yeast Yarrowia lipolytica, purified (molecular weight 69 kDa) and crystallized using the hanging‐drop method. Crystals belong to the monoclinic space group C2, with unit‐cell parameters a = 250.6, b = 50.6, c = 51.5 Å, β = 94.1°. A complete data set has been collected at 100 K to 1.95 Å resolution on an X‐ray synchrotron source.  相似文献   

14.
  总被引:13,自引:0,他引:13  
Cytokinin levels in plant cells are dependent on cytokinin biosynthesis and/or uptake from extracellular sources, metabolic interconversions, inactivation and degradation. Cytokinin conversion to compounds differing in polarity seems to be decisive for their entrapment within the cell and intracellular compartmentation, which affects their metabolic stability. Increase in cytokinin levels, resulting either from their uptake or intracellular biosynthesis, may promote further autoinductive accumulation of cytokinins which may function in the induction of cytokinin-initiated physiological processes. Accumulated cytokinins are capable of inducing cytokinin oxidase which consequently decreases cytokinin levels. This seems to be the mechanism of re-establishment and maintenance of cytokinin homeostasis required for further development of physiological events induced by transient cytokinin accumulation. Auxin may influence cytokinin levels by down regulation of cytokinin biosynthesis and/or by promotion of cytokinin degradation. A model of the regulation of cytokinin levels in plant cells based on these phenomena is presented and its physiological role(s) is discussed.  相似文献   

15.
    
The plant hormones cytokinins play a central role in regulating cell division and developmental events. Cytokinin oxidase regulates the levels of these plant hormones by catalyzing their irreversible oxidation, which contributes to the regulation of various morpho‐physiological processes controlled by cytokinins. In this study, the crystallization and preliminary X‐ray diffraction analysis of the flax cytokinin oxidase LuCKX1.1 are reported. Plate‐like crystals of LuCKX1.1 were obtained using PEG 3350 as a precipitant and diffracted X‐rays to 1.78 Å resolution. The protein crystals have the symmetry of space group C2 and are most likely to contain two molecules per asymmetric unit.  相似文献   

16.
  总被引:1,自引:0,他引:1  
We have determined by an immunological method the endogenous levels of three cytokinins: dihydrozeatin riboside (DHZR), transzeatin riboside (tZR) and isope-ntenyladenosine (IPA) in watermelon (Citrullus vulgaris Schrad., cv. Fairfax) cotyledons that were either attached to the seedling or excised from the seed after imbibition and then grown on water. Both seedlings and cotyledons were grown either for 5 days in continuous light or for 3 days in the dark and 2 days in light. Our aim was to verify whether endogenous cytokinin levels are lower in excised than in attached cotyledons as could be expected since excised cotyledons are much more sensitive to exogenous cytokinin application. The levels of the three cytokinins were very low immediately after imbibition, but gradually increased during the following days. They were higher in excised cotyledons after 5 days of culture in the dark than in cotyledons of the same age that had developed on the seedling. Dihydrozeatin riboside was by far the most abundant of the three cytokinins in cotyledons as well as in the hypocotyl and the root.
Irradiation reduced the level of DHZR, negating the concept that light promotes cotyledon development by increasing endogenous cytokinins. Transzeatin riboside when supplied exogenously, stimulated cotyledon development at a lower concentration than the other two cytokinins. Exogenous supply of ben-zyladenine (BA) induced a strong increase in endogenous tZR already after 24 h.  相似文献   

17.
玉米素和IAA对番茄子叶再生的影响   总被引:11,自引:0,他引:11  
高水平的外源ZT抑制番茄子叶不定芽形成,导致畸形芽大量出现,延缓再生芽的生根过程。在低水平的ZT和高浓度的IAA共同作用下,不定芽的再生速度加快,正常芽比例增加,后期生根过程明显加快。  相似文献   

18.
    
T.T. Lee 《Phytochemistry》1974,13(11):2445-2453
IAA oxidase and peroxidase were found in all subcellular fractions of tobacco callus cells. The bound and cytoplasmic fractions differed greatly in IAA oxidase/peroxidase ratio and in isoperoxidase composition. The IAA oxidase/peroxidase ratio was particularly high in the plasma membrane-rich fraction. Kinetin had profound effects on IAA oxidase and peroxidase. The appearance of fast migrating isoperoxidases in response to 0·2 μM kinetin was found only in cytoplasmic, plasma membrane and ribosome-rich fractions; a high concentration of kinetin inhibited their formation. High kinetin concentrations also lowered the specific activity of IAA oxidase and peroxidase in all subcellular fractions, but the effect was much greater on peroxidase than on IAA oxidase, thus resulting in a drastic increase in IAA oxidase/peroxidase ratio. Evidently the activities of IAA oxidase and peroxidase were not equivalent and should be considered separately.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号