首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Asymmetric reduction studies of heteroaryl ketones, including phenyl(pyridin-2-yl)methanone in enantioselective form with biocatalysts are very few, and chiral heteroaryl alcohols have been synthesized generally in the small scale. In this study, seven bacterial strains have been used to produce the (S)-phenyl(pyridin-2-yl)methanol in high enantiomeric excess and yield. Among the tested strains, Lactobacillus paracasei BD101, was found to be the best biocatalyst for the reducing phenyl(pyridin-2-yl)methanone to the (S)-phenyl(pyridin-2-yl)methanol at gram scale. The asymmetric bioreduction conditions were systematically optimized using L. paracasei BD101, which demonstrated excellent enantioselectivity and high level of conversion for the bioreduction reaction. (S)-phenyl(pyridin-2-yl)methanol, which is an analgesic, was produced enantiomerically pure form in the first time on gram scale using a biocatalyst. In total, 5.857?g of (S)-phenyl(pyridin-2-yl)methanol in enantiomerically pure form (>99% enantiomeric excess) was obtained in 52?h with 93% yield using whole cells of L. paracasei BD101. Enantiomerically pure (S)-phenyl (pyridin-2-yl)methanol, which is an analgesic, was first produced in the gram scale using a biocatalyst with excellent ee (>99%) and yield (93%).  相似文献   

2.
Engin Şahin 《Chirality》2020,32(3):400-406
Chromane, which has a fused cyclic structure, is a significant molecule that can be found in the structure of many important compounds. Lactobacillus paracasei BD101 was demonstrated as whole-cell biocatalyst for the synthesis of (S)-6-chlorochroman-4-ol with immense enantioselectivity. The conditions of asymmetric reduction were optimized one factor by one factor using L paracasei BD101 to achieve enantiomerically pure product and complete conversion. Using these obtained optimization conditions, asymmetric reduction of 6-chlorochroman-4-one was performed under environmentally friendly conditions; 6-chlorochroman-4-one, having a fused cyclic structure as previously noted to be difficult to asymmetric reduction with biocatalysts, was enantiomerically reduced to (S)-6-chlorochroman-4-ol with an enantiomeric excess >99% on a high gram scale. This study is the first example in the literature for the enantiopure synthesis of (S)-6-chlorochroman-4-ol using a biocatalyst. Also notably, the optical purity of (S)-6-chlorochroman-4-ol obtained in this study through asymmetric bioreduction using whole-cell biocatalyst is the highest value in the literature. In this study, (S)-6-chlorochroman-4-ol was produced on a gram scale by an easy, inexpensive, and environmentally friendly method, which has shown the production of valuable chiral precursors for drug synthesis and other industrial applications. This study provides a convenient method for the production of (S)-6-chlorochroman-4-ol, which can meet the industrial green production demand of this chiral secondary alcohol.  相似文献   

3.
In this study, a total of 10 bacterial strains were screened for their ability to reduce cyclohexyl(phenyl)methanone 1 to its corresponding alcohol. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols. The reaction conditions were systematically optimized for the reducing agent L paracasei BD101, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale asymmetric reduction of cyclohexyl(phenyl)methanone ( 1 ) by L paracasei BD101 gave (S)‐cyclohexyl(phenyl)methanol ( 2 ) with 92% yield and >99% enantiomeric excess. The preparative scale study was carried out, and a total of 5.602 g of (S)‐cyclohexyl(phenyl)methanol in high enantiomerically pure form (>99% enantiomeric excess) was produced. L paracasei BD101 has been shown to be an important biocatalyst in asymmetric reduction of bulky substrates. This study demonstrates the first example of the effective synthesis of (S)‐cyclohexyl(phenyl)methanol by the L paracasei BD101 as a biocatalyst in preparative scale.  相似文献   

4.
The optical resolution of (R,S)‐propranolol by the diastereomeric crystallization method was successfully performed using dehydroabietic acid (DHAA) as the resolving agent in methanol. The three important parameters: DHAA amount, solvent (methanol) amount, and crystallization temperature of diastereomeric salts were optimized employing the response surface methodology (RSM). When maintaining a lower limit of 95% for the purity of (S)‐propranolol, the optimal resolution conditions were a DHAA/(R,S)‐propranolol molar ratio of 1.1, solvent/(R,S)‐propranolol ratio of 16.2 mL.g‐1, and crystallization temperature of –5 °C. The desired (S)‐propranolol was prepared with 94.8% optical purity and 72.2% yield under the optimal conditions. Chirality 27:131–136, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The enantiomers of cis-verbenol (4a and 4a′) were first synthesized in optically pure state. (1S, 4S, 5S)-2-Pinen-4-ol (4a′) was dextrorotatory in acetone or in methanol but it was levorotatory in chloroform; cis-verbenols are indistinguishable by a prefix (+) or (?). The designation of the Ips pheromone as (+)-cis-verbenol is therefore ambiguous and it should be called as (1S, 4S, 5S)-2-pinen-4-ol (4a′) or (S)-cis-verbenol.  相似文献   

6.
As a chiral precursor for the important anticoagulant Edoxaban, enantioselective synthesis of (S)-3-cyclohexene-1-carboxylic acid is of great significance. The complicated procedures and generation of massive solid waste discourage its chemical synthesis, and the alternative biocatalysis route calls for an enzyme capable of asymmetric hydrolysis of racemic methyl-3-cyclohexene-1-carboxylate. To this end, we engineered the E. coli esterase BioH for improved S-enantioselectivity via rational design. By combinatorial modulation of steric and aromatic interactions, a positive mutant Mu3 (L24A/W81A/L209A) with relatively high S-selectivity in hydrolyzing racemic methyl-3-cyclohexene-1-carboxylate was obtained, improving the enantiomeric excess from 32.3% (the wild type) to 70.9%. Molecular dynamics simulation was conducted for both (R)- or (S)- complexes of the wild type and Mu3 to provide hints for the mechanism behind the increased S-selectivity. Moreover, the reaction conditions of Mu3 in methyl-3-cyclohexene-1-carboxylate hydrolysis was optimized to improve the conversion rate to 2 folds.  相似文献   

7.
(S)-(+)-Citramalic-acid-producing activity in microorganisms was studied with resting cells in a reaction mixture containing itaconic acid. Itaconic-acid-utilizing bacteria were found to produce (S)-(+)-citramalic acid from itaconic acid. The strain, which showed the best productivity among those studied, was identified taxonomically as Alcaligenes denitrificans strain MCI2775. (S)-(+)-Citramalic acid produced by this strain was present in a 99.9% enantiometric excess. The culture and reaction conditions for the production were optimized for this strain. Addition of Mn2+, d-pantothenic acid and l-leucine to the culture medium enhanced the (S)-(+)-citramalic acid-producing activity. Under optimal conditions, 27 g (S)-(+)-citramalic acid/l was produced in 30 h. The yield to itaconic acid added was 69.0 mol%. Correspondence to: Y. Asano  相似文献   

8.
The first synthesis of an optically pure (2R,3R,4S)-hydantoin 2, analogue of (2S,3R,4S)-4-hydroxyisoleucine, was achieved in two steps in un-optimized 35% overall yield from previously reported aldehyde synthon 1. (2R,3R,4S)-Hydantoin is stable at acidic pH. This solves the major drawback of (2S,3R,4S)-4-hydroxyisoleucine that easily cyclizes into inactive lactone. Furthermore, (2R,3R,4S)-hydantoin stimulates the insulin secretion by 150% at 25 μM compared with 4-hydroxyisoleucine and insulin secretagogue drug repaglinide. In view of its stability and biological activity, (2R,3R,4S)-hydantoin represents a good candidate for type-2 diabetes management and control.  相似文献   

9.
A practical synthesis of (2S,4S)-4-hydroxyproline (1) based on DCC-induced inversion of the hydroxyl group of (2S,4R)-4-hydroxyproline (2) is described.  相似文献   

10.
(R)-ricinoleic acid is the main component of castor oil from Ricinus communis L. Due to the presence of the hydroxyl group in homoallylic position and asymmetrically substituted carbon atom, it may undergo a number of chemical and biochemical transformations resulting in the products with some specific bioactivities. Conversion of (R)-ricinoleic acid into its (S)-enantiomer enables synthesis of both (R)- and (S)-ricinoleic acid derivatives and comparison of their biological activities. In the present research, (R)- and (S)-ricinoleic acid amides synthesized from methyl ricinoleates and ethanolamine or pyrrolidine as well as acetate derivatives of ethanolamine amides were studied to demonstrate their biological activities using HT29 cancer cells. Double staining of cells with fluorochromes (Hoechst 33258/propidium iodide) as well as 2,′7′-dichlorodihydrofluorescein (DCF) and comet assays were performed. Both the tested amides and acetates caused DNA damage and induced apoptotic and necrotic cell death. In the case of (R)- and (S)-enantiomers of one of the tested acetates, significant difference in the ability to induce DNA damage was observed, which showed the impact of the stereogenic center on the activities of these compounds.  相似文献   

11.
(RS)-β-Ionol and (RS)-2-methyl-4-octanol were resolved by using (S)-2-methoxy-2-(1-naphthyl)propanoic acid [(S)-MαNP acid]. The specific stereochemistry of each MαNP ester was elucidated by 2D NMR analyses, and shielding by the 1-naphthyl group was observed in both the 1H- and 13C-NMR spectra. Solvolysis of the individual (S)-MαNP esters gave four single-enantiomer alcohols. The normal-phase HPLC elution order of each MαNP ester is also discussed.  相似文献   

12.
The reaction for the resolution of (R,S)-ibuprofen was scaled-up to yield gram quantities of (S)-ibuprofen. This was accomplished through two enantioselective reactions each catalysed by Novozym 435. In the first reaction, starting from 300 g of racemic ibuprofen, 88.9 g of enantioenriched (S)-ibuprofen with an enantiomeric excess of the order of 85% were produced. In the subsequent reaction, 75 g of the 85 % e.e. material were utilized to produce 38.4 g of (S)-ibuprofen with an enantiomeric excess of 97.5 %.  相似文献   

13.
Rhodococcus equi A4 cells containing a nitrile hydratase and an amidase converted (R,S)-2-(4-methoxyphenyl)-propionitrile into the corresponding (S)-acid (e.e. 87%) and (R)-nitrile (e.e. > 95%) in 49% yield. The same reaction using (R,S)-2-(4-chlorophenyl)-propionitrile gave the (S)-acid (e.e. > 95%) and (R)-nitrile (e.e. 52%) in 20 and 34% yield, respectively.  相似文献   

14.
A novel NADPH-dependent reductase (CaCR) from Candida albicans was cloned for the first time. It catalyzed asymmetric reduction to produce ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE). It contained an open reading frame of 843 bp encoding 281 amino acids. When co-expressed with a glucose dehydrogenase in Escherichia coli, recombinant CaCR exhibited an activity of 5.7 U/mg with ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. In the biocatalysis of COBE to (S)-CHBE, 1320 mM (S)-CHBE was obtained without extra NADP+/NADPH in a water/butyl acetate system, and the optical purity of the (S)-isomer was higher than 99% enantiomeric excess.  相似文献   

15.
Luminescent lanthanide (III) ions have been exploited for circularly polarized luminescence (CPL) for decades. However, very few of these studies have involved chiral samarium (III) complexes. Complexes are prepared by mixing axial chiral ligands (R/S))‐2,2’‐bis(diphenylphosphoryl)‐1,1′‐binaphthyl (BINAPO) with europium and samarium Tris (trifluoromethane sulfonate) (Eu (OTf)3 and Sm (OTf)3). Luminescence‐based titration shows that the complex formed is Ln((R/S)‐BINAPO)2(OTf)3, where Ln = Eu or Sm. The CPL spectra are reported for Eu((R/S)‐BINAPO)2(OTf)3 and Sm((R/S)‐BINAPO)2(OTf)3. The sign of the dissymmetry factors, gem, was dependent upon the chirality of the BINAPO ligand, and the magnitudes were relatively large. Of all of the complexes in this study, Sm((S)‐BINAPO)2(OTf)3 has the largest gem = 0.272, which is one of the largest recorded for a chiral Sm3+ complex. A theoretical three‐dimensional structural model of the complex that is consistent with the experimental observations is developed and refined. This report also shows that (R/S)‐BINAPO are the only reported ligands where gem (Sm3+) > gem (Eu3+).  相似文献   

16.
Xiong Liu  Yu Ma  Longqi Xu  Qi Liu 《Chirality》2019,31(9):750-758
(S,S)‐DIOP, a common catalyst used in asymmetric reaction, was adopted as chiral extractant to separate 3‐chloro‐phenylglycine enantiomers in liquid‐liquid extraction. The factors affecting extraction efficiency were studied, including metal precursors, organic solvents, extraction temperature, chiral extractant concentration, and pH of aqueous phase. (S,S)‐DIOP‐Pd exhibited good ability to recognize 3‐chloro‐phenylglycine enantiomers, and the operational enantioselectivity (α) is 1.836. The highest performance factor (pf) was obtained under the condition of extraction temperature of 9.1°C, (S,S)‐DIOP‐Pd concentration of 1.7 mmol/L, and pH of aqueous phase of 7.0. In addition, the possible recognition mechanism of (S,S)‐DIOP‐Pd towards 3‐chloro‐phenylglycine enantiomers was discussed.  相似文献   

17.
(S)-Styrene oxide and (R)-1,2-phenylethanediol are chiral aromatic molecular building blocks used commonly as precursors to pharmaceuticals and other specialty chemicals. Two pathways have been engineered in Escherichia coli for their individual biosynthesis directly from glucose. The novel pathways each constitute extensions of the previously engineered styrene pathway, developed by co-expressing either styrene monooxygenase (SMO) or styrene dioxygenase (SDO) to convert styrene to (S)-styrene oxide and (R)-1,2-phenylethanediol, respectively. StyAB from Pseudomonas putida S12 was determined to be the most effective SMO. SDO activity was achieved using NahAaAbAcAd of Pseudomonas sp. NCIB 9816-4, a naphthalene dioxygenase with known broad substrate specificity. Production of phenylalanine, the precursor to both pathways, was systematically enhanced through a number of mutations, most notably via deletion of tyrA and over-expression of tktA. As a result, (R)-1,2-phenylethanediol reached titers as high as 1.23 g/L, and at 1.32 g/L (S)-styrene oxide titers already approach their toxicity limit. As with other aromatics, product toxicity was strongly correlated with a model of membrane accumulation and disruption. This study additionally demonstrates that greater flux through the styrene pathway can be achieved if its toxicity is addressed, as achieved in this case by reacting styrene to less toxic products. See accompanying commentary by Brian F. Pfleger DOI: 10.1002/biot.201300251  相似文献   

18.
Abstract

The development of more efficient and environmentally friendly analytical methods represents a current focus for the fine chemical industry. In particular, microscale methodologies that are free of solvents/reagents. The headspace-GC/MS (HS-GC) methodology was employed in this study as a tool for monitoring a biocatalysed reaction of (4S)-(+)-carvone using Phoma sp., a filamentous fungus from human skin. Biocatalysis provides some advantages, such as high efficiency, high degrees of regioselectivity, chemoselectivity, and enantioselectivity. In order to optimize the small scale biocatalytic reaction of the (4S)-(+)-carvone by the filamentous fungus Phoma sp. was used headspace GC/MS methodology, factorial design of experiments and the response surface methodology (RSM) was performed using the biomass of the fungus, substrate mass and pH as parameters. It was observed that for all reactions conditions tested, forming the products (1?R,4S)-dihydrocarvone and (1S,4S)-dihydrocarvone. The most influential factor was pH, with the highest conversion rate (>95%) and diastereomeric excess (d.e.) (>80%) obtained at pH 5.0. Thus, it was demonstrated that human skin Phoma sp. fungus showed significant bioreduction activity and that headspace GC/MS is an efficient approach for real-time monitoring the biocatalysed reactions.  相似文献   

19.
An efficient methodology for the preparation of the α‐tetrasubstituted proline analog (S,S,S)‐2‐methyloctahydroindole‐2‐carboxylic acid, (S,S,S)‐(αMe)Oic, and its enantiomer, (R,R,R)‐(αMe)Oic, has been developed. Starting from easily available substrates and through simple transformations, a racemic precursor has been synthesized in excellent yield and further subjected to HPLC resolution using a cellulose‐derived chiral stationary phase. Specifically, a semipreparative (250 mm × 20 mm ID) Chiralpak® IC column has allowed the efficient resolution of more than 4 g of racemate using a mixture of n‐hexane/tert‐butyl methyl ether/2‐propanol as the eluent. Multigram quantities of the target amino acids have been isolated in enantiomerically pure form and suitably protected for incorporation into peptides. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
Introduction: This study determined the pharmacokinetics and pharmacodynamics of (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine following a 5‐day moderate dose, as a continuous (R,S)‐ketamine infusion in complex regional pain syndrome (CRPS) patients. Materials and methods: Ketamine was titrated to 10–40 mg/h and maintained for 5 days. (R)‐ and (S)‐Ketamine and (R)‐ and (S)‐norketamine pharmacokinetic and pharmacodynamic studies were performed. Blood samples were obtained on Day 1 preinfusion, and at 60–90, 120–150, 180–210, and 240–300 min after the start of the infusion, on Days 2, 3, 4, 5, and on Day 5 at 60 min after the end of infusion. The plasma concentrations of (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine were determined using enantioselective liquid chromatography–mass spectrometry. Results: Ketamine and norketamine levels stabilized 5 h after the start of the infusion. (R)‐Ketamine clearance was significantly lower resulting in higher steady‐state plasma concentrations than (S)‐ketamine. The first‐order elimination for (S)‐norketamine was significantly greater than that of (R)‐enantiomer. When comparing the pharmacokinetic parameters of the patients who responded to ketamine treatment with those who did not, no differences were observed in ketamine clearance and the first‐order elimination of norketamine. Conclusion: The results indicate that (R)‐ and (S)‐ketamine and (R)‐ and (S)‐norketamine plasma concentrations do not explain the antinociceptive activity of the drug in patients suffering from CRPS. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号