首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cytokinin is an adenine derivative plant hormone that generally regulates plant cell division and differentiation in conjunction with auxin. We report that a major cue for the negative regulation of sulfur acquisition is executed by cytokinin response 1 (CRE1)/wooden leg (WOL)/Arabidopsis histidine kinase 4 (AHK4) cytokinin receptor in Arabidopsis root. We constructed a green fluorescent protein (GFP) reporter system that generally displays the expression of the high-affinity sulfate transporter SULTR1;2 in Arabidopsis roots. GFP under the control of SULTR1;2 promoter showed typical sulfur responses that correlate with the changes in SULTR1;2 mRNA levels; accumulation of GFP was induced by sulfur limitation (-S), but was repressed in the presence of reduced sulfur compounds. Among the plant hormones tested, cytokinin significantly downregulated the expression of SULTR1;2. SULTR1;1 conducting sulfate uptake in sultr1;2 mutant was similarly downregulated by cytokinin. Downregulation of SULTR1;1 and SULTR1;2 by cytokinin correlated with the decrease in sulfate uptake activities in roots. The effect of cytokinin on sulfate uptake was moderated in the cre1-1 mutant, providing genetic evidence for involvement of CRE1/WOL/AHK4 in the negative regulation of high-affinity sulfate transporters. These data demonstrated the physiological importance of the cytokinin-dependent regulatory pathway in acquisition of sulfate in roots. Our results suggested that two different modes of regulation, represented as the -S induction and the cytokinin-dependent repression of sulfate transporters, independently control the uptake of sulfate in Arabidopsis roots.  相似文献   

3.
Xylem transport of sulfate regulates distribution of sulfur in vascular plants. Here, we describe SULTR3;5 as an essential component of the sulfate transport system that facilitates the root-to-shoot transport of sulfate in the vasculature. In Arabidopsis (Arabidopsis thaliana), SULTR3;5 was colocalized with the SULTR2;1 low-affinity sulfate transporter in xylem parenchyma and pericycle cells in roots. In a yeast (Saccharomyces cerevisiae) expression system, sulfate uptake was hardly detectable with SULTR3;5 expression alone; however, cells coexpressing both SULTR3;5 and SULTR2;1 showed substantial uptake activity that was considerably higher than with SULTR2;1 expression alone. The V(max) value of sulfate uptake activity with SULTR3;5-SULTR2;1 coexpression was approximately 3 times higher than with SULTR2;1 alone. In Arabidopsis, the root-to-shoot transport of sulfate was restricted in the sultr3;5 mutants, under conditions of high SULTR2;1 expression in the roots after sulfur limitation. These results suggested that SULTR3;5 is constitutively expressed in the root vasculature, but its function to reinforce the capacity of the SULTR2;1 low-affinity transporter is only essential when SULTR2;1 mRNA is induced by sulfur limitation. Consequently, coexpression of SULTR3;5 and SULTR2;1 provides maximum capacity of sulfate transport activity, which facilitates retrieval of apoplastic sulfate to the xylem parenchyma cells in the vasculature of Arabidopsis roots and may contribute to the root-to-shoot transport of sulfate.  相似文献   

4.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   

5.
6.
7.
* In Arabidopsis, SULTR1;1 and SULTR1;2 are two genes proposed to be involved in high-affinity sulphate uptake from the soil solution. We address here the specific issue of their functional redundancy for the uptake of sulphate and for the accumulation of its toxic analogue selenate with regard to plant growth and selenate tolerance. * Using the complete set of genotypes, including the wild-type, each one of the single sultr1;1 and sultr1;2 mutants and the resulting double sultr1;1-sultr1;2 mutant, we performed a detailed phenotypic analysis of root length, shoot biomass, sulphate uptake, sulphate and selenate accumulation and selenate tolerance. * The results all ordered the four different genotypes according to the same functional hierarchy. Wild-type and sultr1;1 mutant plants displayed similar phenotypes. By contrast, sultr1;1-sultr1;2 double-mutant plants showed the most extreme phenotype and the sultr1;2 mutant displayed intermediate performances. Additionally, the degree of selenate tolerance was directly related to the seedling selenate content according to a single sigmoid regression curve common to all the genotypes. * The SULTR1;1 and SULTR1;2 genes display unequal functional redundancy, which leaves open for SULTR1;1 the possibility of displaying an additional function besides its role in sulphate membrane transport.  相似文献   

8.

Key message

Cadmium sensitivity in sultr1;1 - sultr1;2 double mutant with limiting sulfate supply is attributed to the decreased glutathione content that affected oxidative defense but not phytochelatins’ synthesis.

Abstract

In plants, glutathione (GSH) homeostasis plays pivotal role in cadmium (Cd) detoxification. GSH is synthesized by sulfur (S) assimilation pathway. Many studies have tried to investigate the role of GSH homeostasis on Cd tolerance using mutants; however, most of them have focused on the last few steps of S assimilation. Until now, mutant evidence that explored the relationship between GSH homeostasis on Cd tolerance and S absorption is rare. To further reveal the role of GSH homeostasis on Cd stress, the wild-type and a sultr1;1-sultr1;2 double mutant which had a defect in two distinct high-affinity sulfate transporters were used in this study. Growth parameters, biochemical or zymological indexes and S assimilation-related genes’ expression were compared between the mutant and wild-type Arabidopsis plants. It was found that the mutations of SULTR1;1 and SULTR1;2 did not affect Cd accumulation. Compared to the wild-type, the double mutant was more sensitive to Cd under limited sulfate supply and suffered from stronger oxidative damage. More importantly, under the same condition, lower capacity of S assimilation resulted in decreased GSH content in mutant. Faced to the limited GSH accumulation, mutant seedlings consumed a large majority of GSH in pool for the synthesis of phytochelatins rather than participating in the antioxidative defense. Therefore, homeostasis of GSH, imbalance between antioxidative defense and severe oxidative damage led to hypersensitivity of double mutant to Cd under limited sulfate supply.
  相似文献   

9.
Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1‐15 and sel1‐16, which show increased expression of a sulfur deficiency‐activated gene βglucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high‐affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1‐15 and sel1‐16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild‐type, but showed higher expression of BGLU28 and other sulfur deficiency‐activated genes than wild‐type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1‐15 and sel1‐16. Taken together, the genetic evidence suggests that, in addition to its known function as a high‐affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.  相似文献   

10.
Sulfate transporters present at the root surface facilitate uptake of sulfate from the environment. Here we report that uptake of sulfate at the outermost cell layers of Arabidopsis root is associated with the functions of highly and low-inducible sulfate transporters, Sultr1;1 and Sultr1;2, respectively. We have previously reported that Sultr1;1 is a high-affinity sulfate transporter expressed in root hairs, epidermal and cortical cells of Arabidopsis roots, and its expression is strongly upregulated in plants deprived of external sulfate. A novel sulfate transporter gene, Sultr1;2, identified on the BAC clone F28K19 of Arabidopsis, encoded a polypeptide of 653 amino acids that is 72.6% identical to Sultr1;1 and was able to restore sulfate uptake capacity of a yeast mutant lacking sulfate transporter genes (K(m) for sulfate = 6.9 +/- 1.0 microm). Transgenic Arabidopsis plants expressing the fusion gene construct of the Sultr1;2 promoter and green fluorescent protein (GFP) showed specific localization of GFP in the root hairs, epidermal and cortical cells of roots, and in the guard cells of leaves, suggesting that Sultr1;2 may co-localize with Sultr1;1 in the same cell layers at the root surface. Sultr1;1 mRNA was abundantly expressed under low-sulfur conditions (50-100 microm sulfate), whereas Sultr1;2 mRNA accumulated constitutively at high levels under a wide range of sulfur conditions (50-1500 microm sulfate), indicating that Sultr1;2 is less responsive to changes in sulfur conditions. Addition of selenate to the medium increased the level of Sultr1;1 mRNA in parallel with a decrease in the internal sulfate pool in roots. The level of Sultr1;2 mRNA was not influenced under these conditions. Antisense plants of Sultr1;1 showed reduced accumulation of sulfate in roots, particularly in plants treated with selenate, suggesting that the inducible transporter Sultr1;1 contributes to the uptake of sulfate under stressed conditions.  相似文献   

11.
12.
BRASSICA NAPUS was grown under hydroponic conditions and responses to the removal of the external supply of sulfur (S) were analysed in roots and in leaves of different developmental age. The concentrations of sulfate and nitrate were greatest in the older leaves and least in younger leaves, whilst phosphate was greatest in roots and youngest leaves and least in old leaves. S-deprivation resulted in decreases in tissue sulfate concentrations at variable rates in the order: roots and young leaves > middle-aged leaves > oldest leaves. Phosphate concentrations were unaffected and nitrate concentrations were only depleted in the oldest leaves. Expression of representative members of the sulfate transporter gene family was assessed by Northern blotting in the respective tissues. Group 1 transporters (high affinity type) were induced in response to S-deprivation in all tissues except old leaves, where no expression was detected, and to the greatest extent in roots. Groups 2 and 5 (a BRASSICA Group 5 sulfate transporter is reported here, accession number: AJ311389) transporters showed either no or only a small induction by S-deprivation. Group 4 transporters (localised in the tonoplast membrane and thought to be involved in vacuolar sulfate efflux) were induced by S-deprivation with a complex pattern: 4;1 was expressed in root and mature leaves, was strongly induced by sulfur-deprivation in roots, and was also induced in the middle-aged leaves alone; 4;2 was only expressed under S-deprivation in parallel with the observed pattern of tissue sulfate concentrations. Expression patterns indicated that both differences in intracellular sulfate pools and localised aspects of the signal transduction pathway link tissue sulfate-status and sulfur-nutrition regulated gene expression.  相似文献   

13.

Background  

Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole.  相似文献   

14.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.  相似文献   

15.
The uptake and distribution of sulfate in BRASSICA OLERACEA, a species characterised by its high sulfate content in root and shoot, are coordinated and adjusted to the sulfur requirement for growth, even at external sulfate concentrations close to the K (m) value of the high-affinity sulfate transporters. Plants were able to grow normally and maintain a high sulfur content when grown at 5 or 10 microM sulfate in the root environment. Abundance of mRNAs for the high affinity sulfate transporters, BolSultr1;1 and BolSultr1;2, were enhanced at 相似文献   

16.
17.
18.
SULTR2;1 is a low-affinity sulfate transporter expressed in the vascular tissues of roots and leaves for interorgan transport of sulfate in Arabidopsis thaliana . Transgenic Arabidopsis carrying a fusion gene construct of SULTR2;1 5'-promoter region and β-glucuronidase coding sequence (GUS) demonstrated that within the reproductive tissues, SULTR2;1 is specifically expressed in the bases and veins of siliques and in the funiculus, which connects the seeds and the silique. The antisense suppression of SULTR2;1 mRNA caused decrease of sulfate contents in seeds and of thiol contents both in seeds and leaves, as compared with the wildtype (WT). The effect of antisense suppression of SULTR2;1 on seed sulfur status was determined by introducing a sulfur-indicator construct, p35S::βSRx3:GUS, which drives the expression of GUS reporter under a chimeric cauliflower mosaic virus 35S promoter containing a triplicate repeat of sulfur-responsive promoter region of soybean β-conglycinin β subunit (βSRx3). The mature seeds of F1 plants carrying both the SULTR2;1 antisense and p35S::βSRx3:GUS constructs exhibited significant accumulation of GUS activities on sulfur deficiency, as compared with those carrying only the p35S::βSRx3:GUS construct in the WT background. These results suggested that SULTR2;1 is involved in controlling translocation of sulfate into developing siliques and may modulate the sulfur status of seeds in A. thaliana .  相似文献   

19.
Rice (Oryza sativa) takes up arsenite mainly through the silicic acid transport pathway. Understanding the uptake and sequestration of arsenic (As) into the rice plant is important for developing strategies to reduce As concentration in rice grain. In this study, the cellular and subcellular distributions of As and silicon (Si) in rice roots were investigated using high-pressure freezing, high-resolution secondary ion mass spectrometry, and transmission electron microscopy. Rice plants, both the lsi2 mutant lacking the Si/arsenite efflux transporter Lsi2 and its wild-type cultivar, with or without an iron plaque, were treated with arsenate or arsenite. The formation of iron plaque on the root surface resulted in strong accumulation of As and phosphorous on the epidermis. The lsi2 mutant showed stronger As accumulation in the endodermal vacuoles, where the Lsi2 transporter is located in the plasma membranes, than the wild-type line. As also accumulated in the vacuoles of some xylem parenchyma cells and in some pericycle cells, particularly in the wild-type mature root zone. Vacuolar accumulation of As is associated with sulfur, suggesting that As may be stored as arsenite-phytochelatin complexes. Si was localized in the cell walls of the endodermal cells with little apparent effect of the Lsi2 mutation on its distribution. This study reveals the vacuolar sequestration of As in rice roots and contrasting patterns of As and Si subcellular localization, despite both being transported across the plasma membranes by the same transporters.  相似文献   

20.
Vacuoles release sucrose via tonoplast-localised SUC4-type transporters   总被引:1,自引:0,他引:1  
Arabidopsis thaliana has seven genes for functionally active sucrose transporters. Together with sucrose transporters from other dicot and monocot plants, these proteins form four separate phylogenetic groups. Group-IV includes the Arabidopsis protein SUC4 (synonym SUT4) and related proteins from monocots and dicots. These Group-IV sucrose transporters were reported to be either tonoplast- or plasma membrane-localised, and in heterologous expression systems were shown to act as sucrose/H(+) symporters. Here, we present comparative analyses of the subcellular localisation of the Arabidopsis SUC4 protein and of several other Group-IV sucrose transporters, studies on tissue specificity of the Arabidopsis SUC4 promoter, phenotypic characterisations of Atsuc4.1 mutants and AtSUC4 overexpressing (AtSUC4-OX) plants, and functional comparisons of Atsuc4.1 and AtSUC4-OX vacuoles. Our data show that SUC4-type sucrose transporters from different plant families (Brassicaceae, Cucurbitaceae and Solanaceae) localise exclusively to the tonoplast, demonstrating that vacuolar sucrose transport is a common theme of all SUC4-type proteins. AtSUC4 expression is confined to the stele of Arabidopsis roots, developing anthers and meristematic tissues in all aerial parts. Analyses of the carbohydrate content of WT and mutant seedlings revealed reduced sucrose content in AtSUC4-OX seedlings. This is in line with patch-clamp analyses of AtSUC4-OX vacuoles that characterise AtSUC4 as a sucrose/H(+) symporter directly in the tonoplast membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号