首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cynomolgus macaques (Macaca fascicularis) provide increasingly common models for infectious disease research. Several geographically distinct populations of these macaques from Southeast Asia and the Indian Ocean island of Mauritius are available for pathogenesis studies. Though host genetics may profoundly impact results of such studies, similarities and differences between populations are often overlooked. In this study we identified 47 full-length MHC class I nucleotide sequences in 16 cynomolgus macaques of Filipino origin. The majority of MHC class I sequences characterized (39 of 47) were unique to this regional population. However, we discovered eight sequences with perfect identity and six sequences with close similarity to previously defined MHC class I sequences from other macaque populations. We identified two ancestral MHC haplotypes that appear to be shared between Filipino and Mauritian cynomolgus macaques, notably a Mafa-B haplotype that has previously been shown to protect Mauritian cynomolgus macaques against challenge with a simian/human immunodeficiency virus, SHIV89.6P. We also identified a Filipino cynomolgus macaque MHC class I sequence for which the predicted protein sequence differs from Mamu-B*17 by a single amino acid. This is important because Mamu-B*17 is strongly associated with protection against simian immunodeficiency virus (SIV) challenge in Indian rhesus macaques. These findings have implications for the evolutionary history of Filipino cynomolgus macaques as well as for the use of this model in SIV/SHIV research protocols. Kevin J. Campbell and Ann M. Detmer contributed equally to this work.  相似文献   

2.
Vaccine-induced immunity to Ebola virus infection in nonhuman primates (NHPs) is marked by potent antigen-specific cellular and humoral immune responses; however, the immune mechanism of protection remains unknown. Here we define the immune basis of protection conferred by a highly protective recombinant adenovirus virus serotype 5 (rAd5) encoding Ebola virus glycoprotein (GP) in NHPs. Passive transfer of high-titer polyclonal antibodies from vaccinated Ebola virus-immune cynomolgus macaques to naive macaques failed to confer protection against disease, suggesting a limited role of humoral immunity. In contrast, depletion of CD3(+) T cells in vivo after vaccination and immediately before challenge eliminated immunity in two vaccinated macaques, indicating a crucial requirement for T cells in this setting. The protective effect was mediated largely by CD8(+) cells, as depletion of CD8(+) cells in vivo using the cM-T807 monoclonal antibody (mAb), which does not affect CD4(+) T cell or humoral immune responses, abrogated protection in four out of five subjects. These findings indicate that CD8(+) cells have a major role in rAd5-GP-induced immune protection against Ebola virus infection in NHPs. Understanding the immunologic mechanism of Ebola virus protection will facilitate the development of vaccines for Ebola and related hemorrhagic fever viruses in humans.  相似文献   

3.
目的比较H5N1禽流感病毒感染小鼠、恒河猴及食蟹猴急性期肺组织的病理学变化。方法在麻醉状态下对BALB/c小鼠、恒河猴及食蟹猴进行H5N1病毒滴鼻接种,在感染急性期实施安死术,取肺组织运用H&E结合免疫组化技术分析肺组织的病理变化。结果BALB/c小鼠感染急性期,肺组织以变质性炎为主,肺泡结构被广泛破坏,以单核细胞为主的炎细胞浸润,局部可见渗出性炎。而在恒河猴感染急性期肺组织病理改变以渗出性炎为主,同时可见变质性炎和增生性炎。在食蟹猴感染急性期肺组织病理改变以渗出性和变质性炎为主,同时亦可见上皮的新生。结论H5N1禽流感病毒感染小鼠与恒河猴、食蟹猴急性期肺组织的病理变化不同,这将为进一步认识禽流感的发病机制及研究针对性的治疗方法提供一些理论依据。  相似文献   

4.
TRIM5α is a natural resistance factor that binds retroviral capsid proteins and restricts virus replication. The B30.2/SPRY domain of TRIM5α is polymorphic in rhesus macaques, and some alleles are associated with reduced simian immunodeficiency virus (SIV) SIV(mac251) and SIV(smE543) replication in vivo. We determined the distribution of TRIM5α alleles by PCR and sequence analysis of the B30.2/SPRY domain in a cohort of 82 macaques. Thirty-nine of these macaques were mock vaccinated, 43 were vaccinated with either DNA-SIV/ALVAC-SIV/gp120, ALVAC-SIV/gp120, or gp120 alone, and all were exposed intrarectally to SIV(mac251) at one of three doses. We assessed whether the TRIM5α genotype of the macaques affected the replication of challenge virus by studying the number of SIV variants transmitted, the number of exposures required, the SIV(mac251) viral level in plasma and tissue, and the CD4(+) T-cell counts. Our results demonstrated that TRIM5α alleles, previously identified as restrictive for SIV(mac251) replication in vivo following intravenous exposure, did not affect SIV(mac251) replication following mucosal exposure, regardless of prior vaccination, challenge dose, or the presence of the protective major histocompatibility complex alleles (MamuA01(+), MamuB08(+), or MamuB017(+)). The TRIM5α genotype had no apparent effect on the number of transmitted variants or the number of challenge exposures necessary to infect the animals. DNA sequencing of the SIV(mac251) Gag gene of the two stocks used in our study revealed SIV(mac239)-like sequences that are predicted to be resistant to TRIM5α restriction. Thus, the TRIM5α genotype does not confound results of mucosal infection of rhesus macaques with SIV(mac251).  相似文献   

5.
Prior infection with a nef-deleted simian immunodeficiency virus (SIV) protects macaques not only against a homologous pathogenic SIV challenge but also against challenge with a chimeric SIV expressing a human immunodeficiency virus type 1 env gene (SHIV). Since this SHIV is itself nonpathogenic, we sought to explore the use of a nonpathogenic SHIV as a live, attenuated AIDS virus vaccine. Four cynomolgus monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of SIVmac 32H, an isolate derived by in vivo passage of SIVmac 251. Three of the four monkeys became infected with SIVmac. This observation underlines the difficulty, even with a live virus vaccine, in protecting against an AIDS virus infection.  相似文献   

6.
Virologic, serologic, biochemical, and morphological data characterizing spontaneous hepatitis A (HA) in cynomolgus macaques (Macaca fascicularis) and green monkeys (Cercopithecus aethiops) are reported. Experimental HA was induced in macaques as a result of infection with human hepatitis A virus (HAV-h). Disease similar to human HA was induced in cynomolgus macaques by HAV isolates from spontaneously sick rhesus (M. mulatta) and green monkeys. This experimental model of HA in macaques can be used for vaccine and anti-viral preparation testing.  相似文献   

7.
BACKGROUND AND METHODS: To investigate the seroprevalence of polyomavirus infections in macaques, we analyzed 1579 sera from nine different species for antibodies cross-reactive with simian virus 40 (SV40) in an enzyme-linked immunosorbent assay. Most samples were collected from captive animals, but we also investigated a colony of free-ranging Barbary macaques (Macaca sylvanus). RESULTS: High seropositive rates were found in rhesus macaques (Macaca mulatta; 74.7%), cynomolgus macaques (Macaca fascicularis; 44.8%) and Tonkean macaques (Macaca tonkeana; 41.7%), especially in animals imported from China. Low rates were measured in cynomolgus macaques from Mauritius (8.8%), and in Barbary macaques (1.4%). Seropositivity was age-dependent increasing to >70% in animals of 5 years and older. CONCLUSIONS: High seroprevalence rates were found in different species of macaques, dependent on their origin. Very low infection rates found in Barbary macaques and cynomolgus macaques from Mauritius suggest that these animals in the wild are not commonly infected by SV40-like viruses.  相似文献   

8.
MHC class I characterization of Indonesian cynomolgus macaques   总被引:2,自引:2,他引:0  
Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length major histocompatibility complex (MHC) class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B7601 is identical throughout its peptide binding domain to Mamu-B03, an allele that has been associated with control of Simian immunodeficiency virus (SIV) viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research, and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia.  相似文献   

9.
Vaccination of Mauritian cynomolgus macaques with the attenuated nef-truncated C8 variant of SIVmac251/32H (SIVmacC8) induces early, potent protection against pathogenic, heterologous challenge before the maturation of cognate immunity. To identify processes that contribute to early protection in this model the pathogenesis, anatomical distribution and viral vaccine kinetics were determined in relation to localised innate responses triggered by vaccination. The early biodistribution of SIVmacC8 was defined by rapid, widespread dissemination amongst multiple lymphoid tissues, detectable after 3 days. Cell-associated viral RNA dynamics identified mesenteric lymph nodes (MLN) and spleen, as well as the gut mucosae, as early major contributors of systemic virus burden. Rapid, localised infection was populated by discrete foci of persisting virus-infected cells. Localised productive infection triggered a broad innate response, with type-1 interferon sensitive IRF-7, STAT-1, TRIM5α and ApoBEC3G genes all upregulated during the acute phase but induction did not prevent viral persistence. Profound changes in vaccine-induced cell-surface markers of immune activation were detected on macrophages, B-cells and dendritic cells (DC-SIGN, S-100, CD40, CD11c, CD123 and CD86). Notably, high DC-SIGN and S100 staining for follicular and interdigitating DCs respectively, in MLN and spleen were detected by 3 days, persisting 20 weeks post-vaccination. Although not formally evaluated, the early biodistribution of SIVmacC8 simultaneously targets multiple lymphoid tissues to induce strong innate immune responses coincident at the same sites critical for early protection from wild-type viruses. HIV vaccines which stimulate appropriate innate, as well as adaptive responses, akin to those generated by live attenuated SIV vaccines, may prove the most efficacious.  相似文献   

10.
Various simian immunodeficiency virus (SIV)sm/mac and simian/human immunodeficiency virus (SHIV) strains are used in different macaque species to study AIDS pathogenesis, as well as to evaluate candidate vaccine and anti-retroviral drugs efficacy. In this study we investigated the effect of route of infection, species of macaques and nature of virus stock on early plasma viral RNA load. We monitored the plasma RNA concentrations of 63 rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) infected with well-characterised virus stocks administered either by oral, rectal, vaginal or intravenous (i.v.) routes. In SIV(mac)-infected macaques, no significant difference in plasma RNA loads was observed between the rectal, oral and i.v. routes of infection. Cynomolgus macaques developed lower steady state SIV plasma RNA concentrations compared with rhesus macaques and no significant difference was observed between rectal and i.v. routes of infection. In SHIV(89.6p)-infected macaques, no difference between species or between route of infection was observed with this particular chimeric virus.  相似文献   

11.
Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2–3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.  相似文献   

12.
Because most studies of AIDS pathogenesis in nonhuman primates have been performed in Indian-origin rhesus macaques (Macaca mulatta), little is known about lentiviral pathogenicity and control of virus replication following infection of alternative macaque species. Here, we report the consequences of simian-human immunodeficiency virus SHIV-89.6P and SIVmac251 infection in cynomolgus (Macaca fascicularis) and rhesus macaques of Chinese origin. Compared to the pathogenicity of the same viruses in Indian rhesus macaques, both cynomolgus and Chinese rhesus macaques showed lower levels of plasma virus. By 9 to 10 months after infection, both viruses became undetectable in plasma more frequently in cynomolgus than in either Chinese or Indian rhesus macaques. Furthermore, after SHIV-89.6P infection, CD4+ T-cell numbers declined less and survival was longer in cynomolgus and Chinese rhesus macaques than in Indian rhesus macaques. This attenuated pathogenicity was associated with gamma interferon ELISPOT responses to Gag and Env that were generated earlier and of higher frequency in cynomolgus than in Indian rhesus macaques. Cynomolgus macaques also developed higher titer neutralizing antibodies against SHIV-89.6 at 10 and 20 weeks postinoculation than Indian rhesus macaques. These studies demonstrate that the pathogenicity of nonhuman primate lentiviruses varies markedly based on the species or geographic origin of the macaques infected and suggest that the cellular immune responses may contribute to the control of pathogenicity in cynomolgus macaques. While cynomolgus and Chinese rhesus macaques provide alternative animal models of lentiviral infection, the lower levels of viremia in cynomolgus macaques limit the usefulness of infection of this species for vaccine trials that utilize viral load as an experimental endpoint.  相似文献   

13.
The simian immunodeficiency virus (SIV)-rhesus macaque model of heterosexual human immunodeficiency virus transmission consists of atraumatic application of cell-free SIVmac onto the intact vaginal mucosa of mature female rhesus macaques. This procedure results in systemic infection, and eventually infected animals develop the clinical signs and pathologic changes of simian AIDS. To achieve 100% transmission with the virus stocks used to date, multiple intravaginal inoculations are required. The current titration study utilized two stocks of SIVmac and demonstrated that a single intravaginal dose of cell-free SIV can reliably produce infection in rhesus macaques. This study also demonstrated that some animals intravaginally inoculated with cell-free SIVmac develop transient viremia characterized by a limited ability to isolate virus from peripheral blood mononuclear cells and lymph node mononuclear cells and no seroconversion to SIV antigen. SIV could be isolated from the peripheral lymph nodes of transiently viremic animals only during periods of viremia and not at times when SIV was not detected in circulating mononuclear cells. Thus, peripheral lymphoid tissues were not reservoirs of infection in the transiently viremic animals. Taken together, these results suggest either that the SIV infection was cleared in the transiently viremic animals or that SIV infection is limited to a compartment of the genital mucosal immune system that cannot be assessed by monitoring SIV infection in peripheral blood mononuclear cells and peripheral lymphoid tissue.  相似文献   

14.
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.  相似文献   

15.
Earlier primate studies revealed that oral transmission of immunodeficiency viruses can occur at all ages [R. M. Ruprecht et al., J. Infect. Dis. 179(Suppl. 3):S408-S412, 1999]. Using a stock of pathogenic simian-human immunodeficiency virus, SHIV89.6P, we compared the 50% animal infectious dose needed to achieve systemic infection after oral challenge in newborn and older infant or juvenile rhesus macaques. Unexpectedly, the older monkeys required a 150-fold-lower virus challenge dose than the neonates (P=3.3 x 10(-5)). In addition, at least 60,000 times more virus was needed to achieve systemic infection in neonates by the oral route than by the intravenous route (P <1 x 10(-5)). Thus, route of inoculation and age are important determinants of SHIV89.6P infectivity in rhesus macaques.  相似文献   

16.
The Tat protein of human immunodeficiency virus (HIV) is produced very early after infection, plays a key role in the virus life cycle and in acquired immunodeficiency syndrome (AIDS) pathogenesis, is immunogenic and well conserved among all virus clades. Notably, a Tat-specific immune response correlates with non-progression to AIDS. Here, we show that a vaccine based on the Tat protein of HIV blocks primary infection with the simian/human immunodeficiency virus (SHIV)89.6P and prevents the CD4 T cell decline and disease onset in cynomolgus monkeys. No signs of virus replication were found in five out of seven vaccinated macaques for almost 1 year of follow-up. Since the inoculated virus (derived from rhesus or from cynomolgus macaques) is shown to be highly pathogenic in cynomolgus macaques, the results indicate efficacy of Tat vaccination in protection against highly pathogenic virus challenge. Finally, the studies of the Tat-specific immunological responses indicate a correlation of protection with a cytotoxic T cell response. Thus, a Tat-based vaccine is a promising candidate for preventive and therapeutic vaccination in humans.  相似文献   

17.
The Tat protein of human immunodeficiency virus (HIV) is produced very early after infection, plays a key role in the virus life cycle and in acquired immunodeficiency syndrome (AIDS) pathogenesis, is immunogenic and well conserved among all virus clades. Notably, a Tat-specific immune response correlates with non-progression to AIDS. Here, we show that a vaccine based on the Tat protein of HIV blocks primary infection with the simian/human immunodeficiency virus (SHIV)89.6P and prevents the CD4 T cell decline and disease onset in cynomolgus monkeys. No signs of virus replication were found in five out of seven vaccinated macaques for almost 1 year of follow-up. Since the inoculated virus (derived from rhesus or from cynomolgus macaques) is shown to be highly pathogenic in cynomolgus macaques, the results indicate efficacy of Tat vaccination in protection against highly pathogenic virus challenge. Finally, the studies of the Tat-specific immunological responses indicate a correlation of protection with a cytotoxic T cell response. Thus, a Tat-based vaccine is a promising candidate for preventive and therapeutic vaccination in humans.  相似文献   

18.
Abstract: An effective immune response involves the specific recognition of and elimination of an infectious organism at multiple levels. In this context DNA immunization can present functional antigenic proteins to the host for recognition by all arms of the immune system, yet provides the opportunity to delete any genes of the infectious organism which code for antigens or pieces of antigens that may have deleterious effects. Our group has developed the use of nucleic acid immunization as a possible method of vaccination against Human immunodeficiency virus type 1 (HIV-1) [1,2,3,10,11,12]. Sera from non-human primates immunized with DNA vectors that express the envelope proteins from HIV-1 contain antibodies specific to the HIV-1 envelope. These sera also neutralize HIV-1 infection in vitro and inhibit cell to cell infection in tissue culture. Analysis of cellular responses is equally encouraging. T cell proliferation as well as cytotoxic T cell lysis of relevant env expressing target cells were observed. In addition, evidence that DNA vaccines are capable of inducing a protective response against live virus was demonstrated using a chimeric SIV/HIV (SHIV) challenge in vaccinated cynomologous macaques. We found that nucleic acid vaccination induced protection from challenge in one out of four immunized cynomolgus macaques and viral load was lower in the vaccinated group of animals versus the control group of animals. These data encouraged us to analyze this vaccination technique in chimpanzees, the most closely related animal species to man. We observed the induction of both cellular and humoral immune responses with a DNA vaccine in chimpanzees. These studies demonstrate the utility of this technology to induce relevant immune responses in primates which may ultimately lead to effective vaccines.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) hardly replicates in Old World monkeys. Recently, a mutant HIV-1 clone, NL-DT5R, in which a small part of gag and the entire vif gene are replaced with SIVmac239-derived ones, was shown to be able to replicate in pigtail monkeys but not in rhesus monkeys (RM). In the present study, we found that a modified monkey-tropic HIV-1 (HIV-1mt), MN4-5S, acquired the ability to replicate efficiently in cynomolgus monkeys as compared with the NL-DT5R, while neither NL-DT5R nor MN4-5S replicated in RM cells. These results suggest that multiple determinants may be involved in the restriction of HIV-1 replication in macaques, depending on the species of macaques. The new HIV-1mt clone will be useful for studying molecular mechanisms by which anti-viral host factors regulate HIV-1 replication in macaques.  相似文献   

20.
In order to test the hypothesis that CD8+ cytotoxic T lymphocytes mediate protection against acute superinfection, we depleted >99% of CD8+ lymphocytes in live attenuated simian immunodeficiency virus macC8 (SIVmacC8) vaccinees from the onset of vaccination, maintained that depletion for 20 days, and then challenged with pathogenic, wild-type SIVmacJ5. Vaccinees received 5 mg per kg of humanized anti-CD8 monoclonal antibody (MAb) 1 h before inoculation, followed by the same dose again on days 3, 7, 10, 13, and 17. On day 13, peripheral CD8+ T lymphocytes were >99% depleted in three out of four anti-CD8 MAb-treated vaccinees. At this time attenuated SIVmacC8 viral RNA loads in anti-CD8 MAb-treated vaccinees were significantly higher than control vaccinees treated contemporaneously with nonspecific human immunoglobulin. Lymphoid tissue CD8+ T lymphocyte depletion was >99% in three out of four anti-CD8 MAb-treated vaccinees on the day of wild-type SIVmacJ5 challenge. All four control vaccinees and three out of four anti-CD8 MAb-treated vaccinees were protected against detectable superinfection with wild-type SIVmacJ5. Although superinfection with wild-type SIVmacJ5 was detected at postmortem in a single anti-CD8 MAb-treated vaccinee, this did not correlate with the degree of preceding CD8+ T lymphocyte depletion. Clearance of attenuated SIVmacC8 viremia coincided with recovery of normal CD8+ T lymphocyte counts between days 48 and 76. These results support the view that cytotoxic T lymphocytes are important for host-mediated control of SIV primary viremia but do not indicate a central role in protection against acute superinfection conferred by inoculation with live attenuated SIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号