共查询到20条相似文献,搜索用时 0 毫秒
1.
Biswas G Anandatheerthavarada HK Zaidi M Avadhani NG 《The Journal of cell biology》2003,161(3):507-519
Mitochondrial genetic and metabolic stress causes activation of calcineurin (Cn), NFAT, ATF2, and NFkappaB/Rel factors, which collectively alter the expression of an array of nuclear genes. We demonstrate here that mitochondrial stress-induced activation of NFkappaB/Rel factors involves inactivation of IkappaBbeta through Cn-mediated dephosphorylation. Phosphorylated IkappaBbeta is a substrate for Cn phosphatase, which was inhibited by FK506 and RII peptide. Chemical cross-linking and coimmunoprecipitation show that NFkappaB/Rel factor-bound IkappaBbeta forms a ternary complex with Cn under in vitro and in vivo conditions that was sensitive to FK506. Results show that phosphorylation at S313 and S315 from the COOH-terminal PEST domain of IkappaBbeta is critical for binding to Cn. Mutations at S313/S315 of IkappaBbeta abolished Cn binding, inhibited Cn-mediated increase of Rel proteins in the nucleus, and had a dominant-negative effect on the mitochondrial stress-induced expression of RyR1 and cathepsin L genes. Our results show the distinctive nature of mitochondrial stress-induced NFkappaB/Rel activation, which is independent of IKKalpha and IKKbeta kinases and affects gene target(s) that are different from cytokine and TNFalpha-induced stress signaling. The results provide new insights into the role of Cn as a critical link between Ca2+ signaling and NFkappaB/Rel activation. 相似文献
2.
Razzoli M Domenici E Carboni L Rantamaki T Lindholm J Castrén E Arban R 《Genes, Brain & Behavior》2011,10(4):424-433
Accumulating evidences underlie the importance of the interplay between environmental and genetic factors in contributing to the risk to develop mental illness. Brain-derived neurotrophic factor (BDNF) and its Tyrosine receptor kinase B (TrkB) receptor play a fundamental contribution to brain development and plastic adaptations to life events. In the present study, the potential for the BDNF/TrkB contribution in increasing vulnerability to negative social experiences was assessed by subjecting TrkB.T1 overexpressing mice to a chronic social defeat model. TrkB.T1 mice overexpress the dominant-negative truncated splice variant of TrkB receptor leading to decreased BDNF signaling. After repeated social defeat, mice were assessed in a longitudinal study for behavioral, physiological, endocrine and immune responses potentially related to psychiatric endophenotypes. TrkB.T1 overexpression corresponded to smaller changes in metabolic parameters such as body weight, food intake, feed efficiency and peripheral ghrelin levels compared with wild-type (wt) littermates following social defeat. Interestingly, 4 weeks after the last defeat, TrkB.T1 overexpressing mice exhibited more consistent social avoidance effects than what observed in wt subjects. Finally, previously unreported effects of TrkB mutations could be observed on lymphoid organ weight and on peripheral immune biomarker levels, such as interleukin-1α and regulated on activation, normal, T-cell expressed, and secreted (RANTES), thus suggesting a systemic role of BDNF signaling in immune function. In conclusion, the present data support a contribution of TrkB to stress vulnerability that, given the established role of TrkB in the response to antidepressant treatment, calls for further studies addressing the link between stress susceptibility and variability in drug efficacy. 相似文献
3.
Plant mitochondria are proposed to act as signaling organelles in the orchestration of defense responses to biotic stress and acclimation responses to abiotic stress. However, the primary signal(s) being generated by mitochondria and then interpreted by the cell are largely unknown. Recently, we showed that mitochondria generate a sustained burst of superoxide (O2-) during particular plant-pathogen interactions. This O2- burst appears to be controlled by mitochondrial components that influence rates of O2- generation and scavenging within the organelle. The O2- burst appears to influence downstream processes such as the hypersensitive response, indicating that it could represent an important mitochondrial signal in support of plant stress responses. The findings generate many interesting questions regarding the upstream factors required to generate the O2- burst, the mitochondrial events that occur in support of and in parallel with this burst and the downstream events that respond to this burst. 相似文献
4.
O'Neill BT Kim J Wende AR Theobald HA Tuinei J Buchanan J Guo A Zaha VG Davis DK Schell JC Boudina S Wayment B Litwin SE Shioi T Izumo S Birnbaum MJ Abel ED 《Cell metabolism》2007,6(4):294-306
Physiological cardiac hypertrophy is associated with mitochondrial adaptations that are characterized by activation of PGC-1alpha and increased fatty acid oxidative (FAO) capacity. It is widely accepted that phosphatidylinositol 3-kinase (PI3K) signaling to Akt1 is required for physiological cardiac growth. However, the signaling pathways that coordinate physiological hypertrophy and metabolic remodeling are incompletely understood. We show here that activation of PI3K is sufficient to increase myocardial FAO capacity and that inhibition of PI3K signaling prevents mitochondrial adaptations in response to physiological hypertrophic stimuli despite increased expression of PGC-1alpha. We also show that activation of the downstream kinase Akt is not required for the mitochondrial adaptations that are secondary to PI3K activation. Thus, in physiological cardiac growth, PI3K is an integrator of cellular growth and metabolic remodeling. Although PI3K signaling to Akt1 is required for cellular growth, Akt-independent pathways mediate the accompanying mitochondrial adaptations. 相似文献
5.
6.
Recent experimental evidence has replaced the random diffusion model of electron transfer with a model of supramolecular organisation based upon specific interactions between individual respiratory complexes. These supercomplexes were found to be functionally relevant by flux control analysis and to confer a kinetic advantage to NAD-linked respiration (channelling). However, the Coenzyme Q pool is still required for FAD-linked oxidations and for the proper equilibrium with Coenzyme Q bound in the supercomplex. Channelling in the cytochrome c region probably also occurs but does not seem to confer a particular kinetic advantage. The supramolecular association of individual complexes strongly depends on membrane lipid amount and composition and is affected by lipid peroxidation; it also seems to be modulated by membrane potential and protein phosphorylation. Additional properties of supercomplexes are stabilisation of Complex I, as evidenced by the destabilising effect on Complex I of mutations in either Complex III or IV, and prevention of excessive generation of reactive oxygen species. The dynamic character of the supercomplexes allows their involvement in metabolic adaptations and in control of cellular signalling pathways. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. 相似文献
7.
Das J 《BioEssays : news and reviews in molecular, cellular and developmental biology》2006,28(9):890-901
Aerobic mitochondria serve as the power sources of eukaryotes by producing ATP through oxidative phosphorylation (OXPHOS). The enzymes involved in OXPHOS are multisubunit complexes encoded by both nuclear and mitochondrial DNA. Thus, regulation of respiration is necessarily a highly coordinated process that must organize production, assembly and function of mitochondria to meet an organism's energetic needs. Here I review the role of OXPHOS in metabolic adaptation and diversification of higher animals. On a physiological timescale, endocrine-initiated signaling pathways allow organisms to modulate respiratory enzyme concentration and function under changing environmental conditions. On an evolutionary timescale, mitochondrial enzymes are targets of natural selection, balancing cytonuclear coevolutionary constraints against physiological innovation. By synthesizing our knowledge of biochemistry, physiology and evolution of respiratory regulation, I propose that we can now explore questions at the interface of these fields, from molecular translation of environmental cues to selection on mitochondrial haplotype variation. 相似文献
8.
A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling 总被引:9,自引:0,他引:9
Abscisic acid (ABA) conjugates, predominantly their glucose esters, have recently been shown to occur in the xylem sap of different plants. Under stress conditions, their concentration can rise substantially to levels that are higher than the concentration of free ABA. External ABA conjugates cannot penetrate apoplastic barriers in the root. They have to be hydrolysed by apoplastic enzymes in the root cortex. Liberated free ABA can then be redistributed to the root symplast and dragged directly across the endodermis to the stele. Endogenous ABA conjugates are formed in the cytosol of root cells, transported symplastically to the xylem parenchyma cells and released to the xylem vessels. The mechanism of release is unknown; it may include the action of ABC-transporters. Because of its extremely hydrophilic properties, ABA-GE is translocated in the xylem of the stem without any loss to the surrounding parenchyma. After arrival in the leaf apoplast, transporters for ABA-GE in the plasmalemma have to be postulated to redistribute the conjugates to the mesophyll cells. Additionally, apoplastic esterases can cleave the conjugate and release free ABA to the target cells and tissues. The activity of these esterases is increased when barley plants are subjected to salt stress. 相似文献
9.
10.
The role of mitochondrial oxidative stress in aging 总被引:8,自引:0,他引:8
11.
12.
13.
Bernard L. Trumpower 《Journal of bioenergetics and biomembranes》1981,13(1-2):1-24
Ubiquinone participates in the oxidation-reduction reactions of the mitochondrial respiratory chain. In addition, this molecule possesses the necessary properties to function as a hydrogen carrier, thereby stoichiometrically coupling proton translocation to respiration by a direct chemiosmotic mechanism. This review discusses recent experimental evidence and new concepts relating to ubiquinone function in the mitochondrial respiratory chain. Emphasis is placed on possible protonmotive mechanisms of ubiquinone function, recent evidence implicating stable forms of ubisemiquinone in the respiratory chain, and properties of the ubiquinone molecule which may relate to its biological function. 相似文献
14.
In addition to complexes in the respiratory chain, few dehydrogenases playing key roles in the physiological metabolism in neurons, are able to generate reactive oxygen species (ROS) in mitochondria. One of them is the Krebs cycle enzyme, α-ketoglutarate dehydrogenase (α-KGDH), which is capable of producing superoxide and hydrogen peroxide by the E3 subunit of the enzyme regulated by changes in the NADH/NAD+ ratio. Mutations in the E3 subunit known to be related to diseases in humans were shown to have increased ROS-forming ability. α-Glycerophosphate dehydrogenase (α-GPDH) located on the outer surface of the inner membrane can also generate ROS, which is stimulated by Ca2+. ROS production by α-GPDH is unique as it does not require Ca2+ uptake and it is observed in respiring as well as damaged, bioenergetically incompetent mitochondria. The possible role of ROS generation by these dehydrogenases in brain pathology is discussed in this review. 相似文献
15.
Holmberg C Katz S Lerdrup M Herdegen T Jäättelä M Aronheim A Kallunki T 《The Journal of biological chemistry》2002,277(35):31918-31928
We demonstrate here a novel role for the I kappa B kinase complex-associated protein (IKAP) in the regulation of activation of the mammalian stress response via the c-Jun N-terminal kinase (JNK)-signaling pathway. We cloned IKAP as a JNK-associating protein using the Ras recruitment yeast two-hybrid system. IKAP efficiently and specifically enhanced JNK activation induced by ectopic expression of MEKK1 and ASK1, upstream activators of JNK. Importantly, IKAP also enhanced JNK activation induced by ultraviolet light irradiation as well as treatments with tumor necrosis factor or epidermal growth factor. The JNK association site in IKAP was mapped to the C-terminal part of IKAP. Interestingly, this region is deleted from IKAP expressed in the autonomous nervous system of the patients affected by familial dysautonomia. Ectopic expression of this C-terminal fragment of IKAP was sufficient to support JNK activation. Taken together, our data demonstrate a novel role for IKAP in the regulation of the JNK-mediated stress signaling. Additionally, our results point to a role of JNK signaling in familial dysautonomia and, thus, further support the involvement of JNK signaling in the development, survival, and degeneration of the sensory and autonomic nervous system. 相似文献
16.
Interactions between genes and proteins are crucial for efficient processing of internal or external signals, but this connectivity also amplifies stochastic fluctuations by propagating noise between components. Linear (unbranched) cascades were shown to exhibit an interplay between the sensitivity to changes in input signals and the ability to buffer noise. We searched for biological circuits that can maintain signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations. Negative feedback can buffer this type of noise, but this buffering comes at the expense of an even greater reduction in signaling sensitivity. By systematically analyzing three-component circuits, we identify positive feedback as a central motif allowing for the buffering of propagated noise while maintaining sensitivity to long-term changes in input signals. We show analytically that noise reduction in the presence of positive feedback results from improved averaging of rapid fluctuations over time, and discuss in detail a particular implementation in the control of nutrient homeostasis in yeast. As the design of biological networks optimizes for multiple constraints, positive feedback can be used to improve sensitivity without a compromise in the ability to buffer propagated noise. 相似文献
17.
Mitochondrial volume homeostasis is a housekeeping cellular function, thought to help regulate oxidative capacity, apoptosis, and mechanical signaling. The volume is mainly regulated by potassium flux into and out of the matrix and controlled by the electrochemical potential. Mitochondrial depolarization will therefore affect this flux but studies showing how have not been consistent, and it is unclear what mitochondrial volume changes also occur. The aim of the present study was to investigate mitochondrial volume changes in permeabilized neurons under various bioenergetic conditions using deconvolution confocal microscopy. Under control conditions, mitochondria in situ appeared rod-shaped with mean length, surface area, and volume values of 2.29+/-0.10 microm, 1.41+/-0.10 microm2, and 0.062+/-0.006 microm3, respectively (n=42). Valinomycin, a K+-selective ionophore, increased mitochondrial volume by 63+/-22%, although surface area was almost unchanged because mitochondrial shape became more spherical. Pinacidil, an opener of mitochondrial ATP-dependent channels, produced similar effects, although some mitochondria were insensitive to its action. Mitochondrial depolarization with the protonophore FCCP, or with respiratory chain inhibitors antimycin and sodium azide was associated with a considerable increase in mitochondrial volume (by 75%-140%). Effects of mitochondrial modulators were also studied in intact neurones. Tracking of single mitochondria showed that during 65+/-2% of their time, mitochondria were motile with an average velocity of 0.19+/-0.01 microm/s. Antimycin, azide, and FCCP induced mitochondrial swelling and significantly decreased mitochondrial motility. In the presence of pinacidil, swollen mitochondria had reduced their motility, although mitochondria with normal volume stayed motile. These data show that mitochondrial depolarization was followed by significant swelling, which, in turn, impaired mitochondrial trafficking. 相似文献
18.
Migraine is a common neurological disorder characterised by debilitating head pain and an assortment of additional symptoms which can include nausea, emesis, photophobia, phonophobia and occasionally visual sensory disturbances. Migraine is a complex disease caused by an interplay between predisposing genetic variants and environmental factors. It affects approximately 12?% of studied Caucasian populations with affected individuals being predominantly female. Genes involved in neurological, vascular or hormonal pathways have all been implicated in predisposition towards developing migraine. All of these are nuclear encoded genes, but given the role of mitochondria in a number of neurological disorders and in energy production it is possible that mitochondrial variants may play a role in the pathogenesis of this disease. Mitochondrial DNA has been a useful tool for studying population genetics and human genetic diseases due to the clear inheritance shown through successive generations. Given the clear gender bias found in migraine patients it may be important to investigate X-linked inheritance and mitochondrial-related variants in this disorder. This paper explores the possibility that mitochondrial DNA changes may play a role in migraine. Few variants in the mitochondrial genome have so far been investigated in migraine and new studies should be aimed towards investigating the role of mitochondrial DNA in this common disorder. 相似文献
19.
20.
The molecular pathways regulating sleep remain poorly understood. Studies in this issue demonstrate a role for Notch signaling in sleep regulation as well as stress response in both Caenorhabditis elegans and Drosophila. 相似文献