首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous class of environmental contaminants. The compound phenanthrene is a model PAH. A novel fluorometric method for measuring phenanthrene metabolism in vitro was developed and verified with direct measurement of [14C]phenanthrene using dog liver microsomes. The fluorometric assay and direct measurement of [14C]phenanthrene metabolism were used to show that CYP6D1, a house fly cytochrome P450, is the major house fly P450 involved in phenanthrene metabolism. Phenanthrene was metabolized by microsomes from the LPR strain of house fly that overexpresses CYP6D1, but metabolism was not observed in the CS strain that has a lower level of CYP6D1. Furthermore, the majority of phenanthrene metabolism was inhibited by a CYP6D1-specific antibody. This study increases the number of known substrates of CYP6D1 and identifies polyaromatic hydrocarbons as potential substrates of CYP6D1. The utility of CYP6D1 as an agent in bioremediation and the utility of the new fluorometric assay for understanding PAH metabolism in insects and mammals are discussed.  相似文献   

2.
Monooxygenase activity in microsomes from the LPR strain of house fly (Musca domestica L.) was inhibited by anti-P450lpr, and antiserum specific for house fly cytochrome P450lpr. Anti-P450lpr did not inhibit house fly cytochrome P450 reductase or rat cytochrome P450 monooxygenase assays, consistent with specific inhibition of P450lpr. Anti-P450lpr inhibited the ability of cytochrome P450 reductase to reduce carbon monoxide treated LPR microsomal cytochrome P450, up to 49% of the total, showing that inhibition of cytochrome P450 reduction is the major mechanism of inhibition. Anti-P450lpr inhibited 98% of methoxyresorufin-O-demethylase activity and all the benzo(a)pyrene hydroxylase activity in LPR microsomes, but none of the pentoxyresorufin-O-dealkylase activity. The antiserum partially inhibited ethoxyresorufin-O-dealkylase and ethoxycoumarin-O-dealkylase activity. These results demonstrate that methoxyresourfin-O-demethylase activity and benzo(a)pyrene hydroxylase activity are characteristic substrates for P450lpr activity in the LPR strain of house fly.  相似文献   

3.
NADPH-reduction of benzo[a]pyrene 4,5-oxide (BP-4,5-oxide) to BP required four components from rat liver: cytochrome P-450, NADPH cytochrome P-450 reductase, phosphatidylcholine and a soluble, heat-sensitive factor which was present in 105 000 × g supernatant and was also released from microsomes by sonication. The requirement for this factor contrasts with recently reported results from Sugiura et al. (Cancer Res., 40 (1980) 2910). Oxide-reduction was 40 times faster under anaerobic conditions, but oxygen did not affect the stimulation factor. This stimulation was highest (× 15) at low concentrations of microsomal protein (<0.1 mg/ml) and was almost absent at high concentrations of microsomal protein (>1 mg/ml). Oxide-reduction activity was proportional to microsomal protein concentration in the presence of added 105 000 × g supernatant, but for microsomes alone (>0.1 mg/ml) exhibited a parallel plot with an intercept at 0.08 mg/ml microsomal protein. Stimulation was highest at high concentrations of BP-4,5-oxide and a linear plot of V−1 vs. [BP-4,5-oxide]−1 was only obtained in the presence of 105 000 × g supernatant (Km = 3 μM, Vmax = 3.3 nmol/mg/min). Microsomal hydration of BP-4,5-oxide (inhibited in reductase assays) was unaffected by 105 000 × g supernatant, suggesting that stimulation of oxide-reduction did not derive from solubilization of BP-4,5-oxide. Stimulation was observed in the initial rate of reaction and was independent of incubation time. Inhibition of lipid peroxidation, removal of peroxides and deoxygenation were all excluded as explanations of the stimulatory effect.  相似文献   

4.
The ability of camel liver microsomes to metabolise a range of common environmental carcinogens including benzo(a)pyrene, dimethylbenzanthracene and aflatoxin B1 has been investigated. The camel liver has shown the ability to metabolise benzo(a)pyrene, dimethylbenzanthracene and aflatoxin B1 to a number of metabolites. The major metabolites of benzo(a)pyrene produced by camel liver enzymes were identified as its mono-hydroxy derivatives and suggest that the metabolic detoxification pathways of carcinogen metabolism are predominant in this species. Benzo(a)pyrene metabolising activity in camel liver required NADPH and was inhibited by CO and alpha-naphthoflavone suggesting the involvement of cytochrome P450 in the metabolism of this carcinogen by camel liver. The cytochrome P450-dependent metabolism of carcinogen and other specific substrates such as ethoxyresorufin and ethoxycoumarin, by camel liver enzymes, was about 50% higher than that of rat liver enzymes. The cytochrome P450-dependent metabolism of a variety of carcinogenic and other substrates by camel liver demonstrated that there are multiple forms of cytochrome P450 enzymes involved in the metabolism of a wide array of xenobiotics and pollutants.  相似文献   

5.
Addition of cytochrome b5 to recombinant cytochrome P450 2E1 systems has been shown to enhance the metabolism of dialkylnitrosamines in vitro. To determine if this effect could be observed with recombinant expression systems in vivo, we have constructed mutagenicity tester strains that coexpress full-length human cytochrome P450 2E1 (CYP2E1), rat cytochrome P450 reductase, and human cytochrome b5 in Salmonella typhimurium lacking ogt and ada methyltransferases (YG7104, ogt; and YG7108, ogt, ada). These new recombinant strains exhibit a four- to five-fold greater mutagenic response to dimethylnitrosamine, diethylnitrosamine, and dipropylnitrosamine than strains that contain only CYP2E1 and reductase, and are over 100-fold more sensitive to nitrosamines than the parental strains in the presence of an exogenous activating system (S9 fraction). The four-fold increase in mutagenicity in the presence of cytochrome b5 was consistent with increasing alkyl chain length up to dibutylnitrosamine, which was poorly activated by CYP2E1. The greatest enhancement was obtained with a tricistronic construct in which the b5 cDNA preceded the P450 and reductase cDNAs; placing the b5 cDNA after the reductase cDNA was substantially less effective. These new, highly sensitive strains may prove useful in the detection of nitrosamine contamination of food and environmental samples.  相似文献   

6.
Gay Goodman  John S. Leigh  Jr. 《BBA》1987,890(3):360-367
The electron-spin relaxation rates of the two species of cytochrome a3+3-azide found in the azide compound of bovine-heart cytochrome oxidase were measured by progressive microwave saturation at T = 10 K. It has been shown previously that Cyt a+33-azide gives rise to two distinct EPR resonances, depending upon the oxidation state of Cyt a. When Cyt a is ferrous, Cyt a3+3-azide has g = 2.88, 2.19 and 1.64; upon oxidation of Cyt a, the a3+3-azide g-values become g = 2.77, 2.18, and 1.74 (Goodman, G. (1984) J. Biol. Chem. 259, 15094–15099). The relaxation effect of Cyt a on Cyt a3 could be measured as the difference in microwave field saturation parameter H1/2 between the g = 2.77 and g = 2.88 species. For each signal the spin-lattice relaxation time T1 was determined from H1/2 using the transverse relaxation time T2. The value of T2 at 10 K was extrapolated from a plot of line-width vs. temperature at higher temperature. The dipolar contribution to T1 was related to the Cyt a-Cyt a3 spin-spin distance utilizing available information on the relative orientation of Cyt a3-azide and Cyt a (Erecinska, M., Wilson, D.F. and Blasie, J.K. (1979) Biochim. Biophys. Acta 545, 352–364). By taking into account the relaxation parameters for both gx and gz components of the Cyt a3-azide g-tensor, the angle between the gz components of the Cyt a and Cyt a3g-tensors was determined to be between 0 and 18°, and the Cyt a-Cyt a3 spin-spin distance was found to be 19 ± 8 Å.  相似文献   

7.
The effect of flavone and 7,8-benzoflavone on the metabolism of benzo[a]pyrene to fluorescent phenols by five cytochrome P-450 isozymes obtained from rabbit liver microsomes was determined. Benzo[a]pyrene metabolism was stimulated more than 5-fold by the addition of 600 microM flavone to a reconstituted monooxygenase system consisting of NADPH, cytochrome P-450 reductase, dilauroylphosphatidylcholine, and cytochrome P-450LM3c or cytochrome P-450LM4. In contrast, an inhibitory effect of flavone on benzo[a]pyrene metabolism was observed when cytochrome P-450LM2, cytochrome P-450LM3b, or cytochrome P-450LM6 was used in the reconstituted system. 7,8-Benzoflavone (50-100 microM) stimulated benzo[a]pyrene metabolism by the reconstituted monooxygenase system about 10-fold when cytochrome P-450LM3c was used, but benzo[a]pyrene hydroxylation was strongly inhibited when 7,8-benzoflavone was added to the cytochrome P-450LM6-dependent system. Smaller effects of 7,8-benzoflavone were observed on the metabolism of benzo[a]pyrene by the cytochrome P-450LM2-, cytochrome P-450LM3b-, and cytochrome P-450LM4-dependent monooxygenase systems. These results demonstrate that the activating and inhibiting effects of flavone and 7,8-benzoflavone on benzo[a]pyrene metabolism depend on the type of cytochrome P-450 used in the reconstituted monooxygenase system.  相似文献   

8.
Three groups of isomeric nitrogen heterocycles, phenylpyridines, phenylimidazoles and pyridylimidazoles were studied in relation to the effect of steric factors on type II binding to cytochrome P-450 and inhibition of aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity in hepatic microsomes from phenobarbital(PB)- and β-naphthoflavone(βNF)-induced rats. Type II binding affinity was lower (higher Ks) in compounds with substituents on the carbon adjacent to the nitrogen undergoing ligand interaction than in those where steric hindrance near the nitrogen was minimal. Binding affinities of the compounds as measured by their Ks values, were quite similar in both PB- and βNF-induced microsomes. In PB-induced microsomes, type II binding affinity was generally reflected by the ability of the compounds to inhibit AHH activity. In contrast, most of the compounds evaluated were inactive as AHH inhibitors in βNF-induced microsomes.  相似文献   

9.
Menadione is known to decrease the mixed function oxidase mediated metabolism of a number of substrates in microsomal systems. The present study examines the effect of menadione on benzo(a)pyrene metabolism in whole cells, microsomes and a semi-purified reconstituted mixed function oxidase system. Menadione has a high affinity for the NADPH dependent cytochrome P-450 reductase and acts as a competitive inhibitor of cytochrome P-450 reductase in the metabolism of benzo(a)pyrene. This is the mechanism of inhibition of aryl hydrocarbon hydroxylase by menadione in reconstituted systems. In a whole cell system and at low concentrations of menadione, depletion of reduced pyridine nucleotides is the initial inhibitory event.  相似文献   

10.
Irradiation of starved cultures of Saccharomyces cerevisiae with blue light under aerobic conditions inhibited the capacity of the yeast cells to respire added substrates (e.g., ethanol) and stimulated endogenous respiration. Spectroscopic examination of the cells showed that the irradiation destroyed both cytochrome a and a3 components of cytochrome oxidase and a part of the cytochrome b. Irradiation under anaerobic conditions had no effect on the respiratory capacity or the cytochrome content of the cells. Under aerobic conditions cytochrome a3 was protected against photodestruction when complexed with cyanide and cytochrome a was protected when complexed with azide.  相似文献   

11.

1. 1. The functional terminal oxidase of the light-anaerobically grown Rhodopseudomonas spheroides cells was found to be the o-type cytochrome, whereas that of the dark-aerobically grown cells was the a-type cytochrome. When the dark-aerobically grown cells were further incubated under a semianaerobic condition in the dark, the content of the o-type cytochrome was increased in these cells, while the synthesis of the a-type cytochrome appeared to be repressed. In Rhodospirillum rubrum cells, grown either aerobically in the dark or anaerobically in the light, cytochrome o was the sole functional terminal oxidase.

2. 2. Reactions with the a-type and o-type cytochromes from Rhodopseudomonas spheroides and also with the o-type cytochrome from Rhodospirillum rubrum were compared using reduced yeast cytochrome c as substrate. The reaction with the a-type cytochrome was far less sensitive to NaN3 and hydroxylamine than those with the o-type cytochromes, whereas all the reactions were inhibited by KCN in apparently the same manner.

Abbreviations: Rps, Rhodopseudomonas; Rsp, Rhodospirillum; DCIP, 2,6-dichlorophenol-indophenol  相似文献   


12.
Rates of microsomal 17β-estradiol (E2) hydroxylation at the C-2, -4, -6, and -15 positions are each induced greater than 10-fold by treating MCF-7 breast cancer cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The TCDD-induced activities at the C-2, -6 and -15 positions have been attributed to cytochrome P450 1A1 (CYP1A1); however, the low Km 4-hydroxylase induced by TCDD appears to be a distinct enzyme. We report here that antibodies to cytochrome P450-EF (mouse CYP1B1) selectivity inhibited the C-4 hydroxylation of E2 catalyzed by microsomes from TCDD-treated MCF-7 cells. Western blots probed with anti-CYP1B antibodies showed the induction of a 52 kDa microsomal protein in response to treatment with TCDD in MCF-7 cells. Western blots of microsomes from HepG2 cells did not show the TCDD-induced 52 kDa protein, and microsomes from TCDD-treated HepG2 cells did not catalyze a low Km hydroxylation of E2 at C-4. Cellular metabolism experiments also showed induction of both the C-2 and -4 hydroxylation pathways in TCDD-treated MCF-7 cells as evidenced by elevated 2- and 4-methoxyestradiol (MeOE2) formation. In contrast, TCDD-treated HepG2 cells showed 2-MeOE2 formation predominantly over 4-MeOE2. Northern blots of RNA isolated from untreated and TCDD-treated cells, when probed with the human CYP1B1 cDNA, showed induction of a 5.2 kb RNA in MCF-7 cells but not in HepG2 cells in response to treatment with TCDD. These results provide additional evidence for the induction by TCDD of a novel E2 4-hydroxylase in MCF-7 cells but not in HepG2 cells and indicate possible endocrine regulatory roles for the newly discovered group of enzymes of the CYP1B subfamily.  相似文献   

13.
Saccharomyces cerevisiae, brewer's yeast, produces a microsomal benzo(a)pyrene hydroxylase when grown at high glucose concentrations of which the haemoprotein, cytochrome P-450 (RH, reduced-flavoprotein:oxygen oxidoreductase (RH-hydroxylating) EC 1.14.14.1) is a component. We report here kinetic data derived from Lineweaver-Burk plots of benzo(a)pyrene hydroxylation. The Michaelis constant was decreased by growth of the yeast in the presence of benzo(a)pyrene showing the induction of a form of the enzyme more specific for this compound. NADPH or cumene hydroperoxide could be used as cofactors by this enzyme, although with different Km and V values for benzo(a)pyrene. A solubilised and a solubilised, immobilised enzyme preparation were capable of benzo(a)pyrene hydroxylation, using cumene hydroperoxide but not NADPH as the cofactor. Benzo(a)pyrene was found to produce a modified type I spectral change with yeast and rat liver microsomes. The interaction of benzo(a)pyrene with cytochrome P-450 was investigated further by means of an equilibrium gel filtration technique. There appeared to be 20 binding sites per mol ofcytochrome P-450 for benz(a)pyrene, in both yeast and rat liver microsomes.  相似文献   

14.
Data from the EXPAH project on PAH exposure and intermediary biomarkers were analyzed with respect to individual genotypes at seven metabolic gene loci. The GSTM1 null allele was associated with significantly higher levels of two biomarkers, malondialdehyde-2′-deoxyguanosine and benzo[a]pyrene DNA adducts in the total population from three Central and Eastern European countries. The CYP1B1 Leu/Val variant demonstrated effects on both markers of oxidative DNA damage in opposite directions, producing a higher level of M1dG with a trend from wild type (Leu/Leu) to heterozygotes to homozygous (Val/Val) variants, whereas the effects of these variants were reversed for 8-oxodG. Cluster Analysis was used to group composite genotypes in order to determine if combined genotypes of multiple loci could explain some of the variation seen with the biomarkers, expressed per unit of exposure, referred to as a sensitivity index. This analysis revealed two closely related genotypes each involving four of the loci (GSTM1*0/*0, CYP1A1*1*1, CYP1B1*1/*2, GSTP1*1/*1 and GSTT1*0/*0, CYP1A1*1*1, CYP1B1*1/*2, GSTP1*1/*1.) that conferred significant resistance to the DNA damaging effects of benzo[a]pyrene, measured as the level of a benzo[a]pyrene-like adduct per unit of benzo[a]pyrene exposed.  相似文献   

15.
David F. Wilson  David Nelson 《BBA》1982,680(3):233-241
A new coulometric-potentiometric titration cuvette is described which permits accurate measurements of oxidation-reduction components in membranous systems. This cuvette has been utilized to measure the properties of cytochrome c oxidase in intact membranes of pigeon breast muscle mitochondria. The reducing equivalents accepted and donated by the portion of the respiratory chain with half-reduction potentials greater than 200 mV are equal to those required for the known components (cytochrome a3 and the high-potential copper plus cytochrome a, ‘visible copper’, cytochrome c1, cytochrome c, and the Rieske iron-sulfur protein). Titrations in the presence of CO show that formation of the reduced cytochrome a3-CO complex requires two reducing equivalents per cytochrome a3 (coulometric titration). Potentiometric titrations indicate (Lindsay, J.G., Owen, C.S. and Wilson, D.F. (1975) Arch. Biochem. Biophys. 169, 492–505) that both cytochromes a3 and the high-potential copper must be reduced in order to form the CO complex (n=2.0 with a CO concentration-dependent half-reduction potential, Em). By contrast, titrations in the presence of azide show that the Em value of the high-potential copper is unchanged by the presence of azide and thus azide binds with nearly equal affinity whether the copper is reduced or oxidized.  相似文献   

16.
Cytochrome P450 can undergo inactivation following monooxygenase reactions in liver microsomes of untreated, phenobarbital and 3-methylcholanthrene-treated rats and rabbits. The acceleration of cytochrome P450 loss in the presence of catalase inhibitors (sodium azide, hydroxylamine) indicates that hydrogen peroxide is involved in hemoprotein degradation. It was revealed that cytochrome P450 is inactivated mainly by H2O2 formed through peroxy complex breakdown, whereas H2O2 formed via the dismutation of superoxide anions produces a slight inactivating effect. The hydrogen peroxide added outside or formed by a glucose-glucose oxidase system has less of an inactivating effect than H2O2 produced within the cytochrome P450 active center. Self-inactivation of cytochrome P450 during oxygenase reactions is highly specific. Other components of the monooxygenase system, such as cytochrome b5, NADH- and NADPH-specific flavorproteins, undergo no inactivation. The alterations in phospholipid content and in the rate of lipid peroxidation were not observed as well. The inactivation of cytochrome P450 by H2O2 is the result of heme loss or destruction without cytochrome P420 formation. Such. a mechanism operates with different substrates and cytochrome P450 species catalyzing the partially coupled monooxygenase reactions.  相似文献   

17.
Ethanol consumption decreased the specific content of microsomal cytochrome b5 in both chow-and liquid diet-fed hamsters while cytochrome P450 levels were unchanged in chow-fed animals and increased in liquid diet-fed animals. Microsomes from animals receiving ethanol in their drinking water exhibited decreased rates of microsomal aryl hydrocarbon hydroxylase activity and postmitochondrial supernatant mediated mutagenicity of benzo(a)pyrene. In contrast, microsomes from hamsters receiving ethanol in liquid diets showed no changes in either of these two activities. When the observed rates of 7,8 and 9,10 diol formation per nmole P450 for chow-fed animals are plotted vs. the b5/P450 ratio a positive correlation was observed suggesting that cytochrome b5 participates directly in the microsomal metabolism of benzo(a)pyrene.  相似文献   

18.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2 · 104 M−1 · s−1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s−1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM–131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs ≈ 0.02 s) entry of a third electron. Above +200 mV, the number of electrons taken up in the initial fast phase drops as a redox center (presumably CuA) titrates with an apparent mid-point potential of +240 mV. The slow phase of reduction remains at the more positive redox values. (4) The results are interpreted in terms of an initial fast reduction of cytochrome a (and CuA at redox values more negative than +240 mV) followed by a slow reduction of CuB. CuB reduction is proposed to spin-uncouple cytochrome a3 to form a cyanide sensitive center, and trigger a conformational change to an activated form of the enzyme with faster intramolecular electron transfer.  相似文献   

19.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


20.
Mammalian cytochrome P450 1 (CYP1) genes are well characterized, but in other vertebrates only the functions of CYP1A genes have been well studied. We determined the catalytic activity of zebrafish CYP1A, CYP1B1, CYP1C1, CYP1C2, and CYP1D1 proteins using 11 fluorometric substrates and benzo[a]pyrene (BaP). The resorufin-based substrates, 7-ethoxyresorufin, 7-methoxyresorufin, and 7-benzyloxyresorufin, were well metabolized by all CYP1s except CYP1D1. CYP1A metabolized nearly all substrates tested, although rates for non-resorufin substrates were typically lower than resorufin-based substrates. Zebrafish CYP1s did not metabolize 7-benzyloxyquinoline, 3-[2-(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin or 7-methoxy-4-(aminomethyl)-coumarin. CYP1B1 and CYP1C2 had the highest rates of BaP metabolism. 3-Hydroxy-BaP was a prominent metabolite for all but CYP1D1. CYP1A showed broad specificity and had the highest metabolic rates for nearly all substrates. CYP1C1 and CYP1C2 had similar substrate specificity. CYP1D1 had very low activities for all substrates except BaP, and a different regioselectivity for BaP, suggesting that CYP1D1 function may be different from other CYP1s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号