首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of activation of rat submandibular protein kinase A (EC 2.7.1.37) isozymes following β-adrenergic receptor stimulation was determined in vitro using dispersed cells and an 8-N3-[32P]cAMP photoprobe. The half-maximal binding of the photoprobe for microsomal and cytosolic type I and cytosolic type II was 9 nM, 27 nM and 92 nM, respectively. ‘Cold trap’ studies indicated that 70% of type I protein kinase A was activated following maximal β-adrenergic receptor stimulation, whereas type II activation was less than 40%. Both cytosolic and microsomal type I activation occurred rapidly following β-adrenergic receptor stimulation and both remain activated throughout the entire secretory period. Type I inactivation occurred rapidly subsequent to β-adrenergic receptor blockade. The dose-response relationship for the isotypes following β-adrenergic receptor activation demonstrated a greater extent of type I activation at submaximal concentrations of agonist. Although protein kinase A may not be the only kinase involved in rat submandibular mucin release, these data add further support to a direct regulatory role for this kinase, with type I having potentially a greater role than type II.  相似文献   

2.
The extent of activation of rat submandibular gland cyclic AMP-dependent protein kinase (EC 2.7.1.37) was determined in vitro using dispersed cells to assess the involvement of this enzyme in submandibular mucin secretion. cAMP-dependent protein kinase activation, as determined by activity ratio method, was markedly increased following β-adrenergic receptor activation. 0.5 M NaCl was required in the homogenization buffer for stabilization of the hormonally activated cAMP-dependent protein kinase. A role for cAMP-dependent protein kinase activation in regulating mucin secretion was strongly suggested by the following: (1) the kinase activity ratio increased rapidly after β-adrenergic receptor stimulation; (2) dose-response relationship of the kinase activation following β-adrenergic receptor activation correlated with isoproterenol induced mucin release; (3) termination of β-adrenergic mediated mucin secretion caused a rapid decrease in the kinase activity ratio; (4) dibutyryl cyclic AMP stimulation caused an increase in the kinase ratio; whereas (5) pure cholinergic and pure α-adrenergic receptor stimulation had no effect on endogenous kinase activity. Although cAMP-dependent protein kinase activation may not be the only regulator of mucin secretion, these data suggest an important regulatory role for this kinase activation during rat submandibular mucin release.  相似文献   

3.
Rat GH-releasing factor (rGRF) stimulated GH release and intracellular cAMP accumulation in cultured rat anterior pituitary cells with EC50 values of approximately 10 and 150 pm, respectively. Consistent with an effect on cellular cAMP levels, rGRF stimulated the adenylate cyclase activity of rat anterior pituitary membranes with an EC50 value of approximately 60 pm. Using antisera directed against the regulatory subunits of type I and II cAMP-dependent protein kinases, these enzymes were immunoprecipitated from the cytosolic fraction of cultured cells in order to monitor the degree of their activation by rGRF. Both isoenzymes were rapidly activated in cells incubated with rGRF but with different kinetics; full activation of protein kinase I was evident within 3-5 min and activation of protein kinase II occurred between 5 and 15 min. The magnitude of activation was differentially regulated by rGRF in a concentration-dependent manner. Somatostatin only partially attenuated rGRF-stimulated GH release, cAMP accumulation, and adenylate cyclase activation. Somatostatin was effective in partially antagonizing activation of protein kinase II at all concentrations of rGRF and of protein kinase I only at intermediate concentrations of rGRF. The significance of this rGRF-induced differential activation of the two isoenzymes of cAMP-dependent protein kinase is discussed in terms of the multiple effects of rGRF on somatotropic cells of the rat anterior pituitary.  相似文献   

4.
We have focused on activation mechanisms of calcium/calmodulin-dependent protein kinase (CaM) kinase I in the hippocampal neurons and compared them with that of CaM kinase IV. Increased activation of CaM kinase I occurred by stimulation with glutamate and depolarization in cultured rat hippocampal neurons. Similar to CaM kinases II and IV, CaM kinase I was essentially activated by stimulation with the NMDA receptor. Although both CaM kinases I and IV seem to be activated by CaM kinase kinase, the activation of CaM kinase I was persistent during stimulation with glutamate in contrast to a transient activation of CaM kinase IV. In addition, CaM kinase I was activated in a lower concentration of glutamate than that of CaM kinase IV. Depolarization-induced activation of CaM kinase I was also evident in the cultured neurons and was largely blocked by nifedipine. In the experiment with 32P-labeled cells, phosphorylation of CaM kinase I was stimulated by glutamate treatment and depolarization. The glutamate- and depolarization-induced phosphorylation was inhibited by the NMDA receptor antagonist and nifedipine, respectively. These results suggest that, although CaM kinases I and IV are activated by the NMDA receptor and depolarization stimulation, these kinase activities are differently regulated in the hippocampal neurons.  相似文献   

5.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

6.
The protein-bound cyclic AMP and the activity of cytosolic protein kinases in the presence and absence of cyclic AMP were determined in rat liver up to 2h after injection of glucagon. On the basis of the different salt-sensitivities of the activated cyclic AMP-dependent proteinkinases I and II, an activation of protein kinase II restricted to the high cyclic AMP concentrations present in the first 30 min after hormone injection was found. Essentially the same result was obtained by chromatographic analysis on DEAE-cellulose of liver cytosol from untreated rats and from rats killed at 2 and 60 min after glucagon injection. Protein kinase II activation was only detected at 2 min after injection. In contrast, the cyclic AMP-dependent protein kinase I was found to be nearly totally activated at 2 min and to be still almost as active at 60 min after the hormone stimulus, whereas the amount of bound cyclic AMP and the activation of total cytosolic protein kinases had fallen to two-thirds of their maximal values during this time period. A third cyclic AMP-independent protein kinase, which co-chromatographed with protein kinase type II, could be clearly distinguished from the two cyclic AMP-dependent kinases by use of the heat-stable inhibitor from bovine muscle, which totally inhibited the cyclic AMP-dependent enzymes, but stimulated the cyclic AMP-independent protein kinase.  相似文献   

7.
Biochemical characterization of rat brain protein kinase C isozymes   总被引:18,自引:0,他引:18  
Biochemical characteristics of three rat brain protein kinase C isozymes, types I, II, and III, were compared with respect to their protein kinase and phorbol ester-binding activities. All three isozymes appeared to be alike in their phorbol ester-binding activities as evidenced by their similar Kd for phorbol 12,13-dibutyrate and requirements for Ca2+ and phospholipids. However, differences with respect to the effector-mediated stimulation of protein kinase activity were detectable among these isozymes. The type I enzyme could be stimulated by cardiolipin to a greater extent than those of the type II and III enzymes. In the presence of cardiolipin, the concentrations of dioleoylglycerol or phorbol 12,13-dibutyrate required for half-maximal activation (A1/2) of the type I enzyme were nearly an order of magnitude lower than those for the type II and III enzymes. In the presence of phosphatidylserine, differences in the A1/2 of dioleoylglycerol and phorbol 12,13-dibutyrate for the three isozymes of protein kinase C were less significant than those measured in the presence of cardiolipin. Nevertheless, the A1/2 of these two activators for the type I enzyme were lower than those for the type II and III enzymes. At high levels of phosphatidylserine (greater than 15 mol %), binding of phorbol 12,13-dibutyrate to the type I enzyme evoked a corresponding stimulation of the kinase activity, whereas binding of this phorbol ester to the type II and III enzymes produced a lesser degree of kinase stimulation. For all three isozymes, the concentrations of phosphatidylserine required for half-maximum [3H]phorbol 12,13-dibutyrate binding were almost an order of magnitude less than those for kinase stimulation. Consequently, neither isozyme exhibited a significant kinase activity at lower levels of phosphatidylserine (less than 5 mol %) and phorbol 12,13-dibutyrate (50 nM), a condition sufficient to promote near maximal phorbol ester binding. In addition to their different responses to the various activators, the three protein kinase C isozymes also have different Km values for protein substrates. The type I enzyme appeared to have lower Km values for histone IIIS, myelin basic protein, poly(lysine, serine) (3:1) polymer, and protamine than those for the type II and III enzymes. These results documented that the three protein kinase C isozymes were distinguishable in their biochemical properties. In particular, the type I enzyme, which is a brain-specific isozyme, is distinct from the type II and III enzymes, both have a widespread distribution among different tissues.  相似文献   

8.
Angiotensin II (Ang II) acts via its type 1 (AT(1)) receptor in neurons to regulate the activity of multiple intracellular signaling molecules, including intracellular Ca(2+), protein kinase C, phosphatidylinositol 3-kinase (PI3-K), and c-Jun NH(2)-terminal kinase (JNK). The present studies investigated the upstream signaling molecules involved in the Ang II stimulation of activator protein-1 (AP-1) DNA binding in neurons. Treatment of neurons cultured from neonatal rat hypothalamus and brainstem with Ang II (100 nM) showed a time-dependent increase in AP-1 DNA binding and this effect was inhibited by the AT(1) receptor antagonist, losartan (1 microM), the PI3-K inhibitor, LY294002 (10 microM), and the JNK inhibitor, JNK inhibitor II (100 nM). Furthermore, Ang II (100 nM) causes a time-dependent increase in JNK activity which was attenuated by PI3-K inhibition. These data establish, for the first time, a signaling cascade involved in the Ang II activation of AP-1 DNA binding in neurons.  相似文献   

9.
Protein kinase C may be important in leukocyte function, because it is activated by phorbol myristate acetate (PMA), a potent stimulus of the respiratory burst in neutrophils. The localization of protein kinase C was compared in unstimulated and PMA-stimulated human neutrophils. Protein kinase C was primarily cytosolic in unstimulated cells but became associated with the particulate fraction after treatment of cells with PMA. The particulate-associated kinase activity did not require added calcium and lipids, but when extracted by Triton X-100 (greater than or equal to 0.2%), calcium and phospholipid dependence could be demonstrated. The EC50 of PMA for stimulating kinase redistribution and activation of NADPH oxidase, the respiratory burst enzyme, were similar (30 to 40 nM). Redistribution of protein kinase C occurred rapidly (no lag) and preceded NADPH oxidase activation (30 sec lag). These results suggest that redistribution of protein kinase C is linked to activation of the respiratory burst in human neutrophils.  相似文献   

10.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was examined in bovine adrenal glomerulosa cells treated with angiotensin II or potassium. Protein kinase C was isolated from cytosol and from detergent-solubilized particulate fractions by DEAE-cellulose chromatography. A major peak of activity for both the soluble and particulate forms of adrenal glomerulosa protein kinase C was eluted at 0.05-0.09 M NaCl. The soluble and particulate forms were found to constitute about 95 and 5%, respectively, of the total enzyme activity in unstimulated cells. A second peak of kinase activity was eluted with 0.15-0.19 M NaCl, which was not dependent on the presence of phospholipids. Exposure of isolated cells for 20 min to 10(-8) M angiotensin II resulted in a decrease in cytosolic activity to 30-40% of control values, and in a corresponding increase in protein kinase C activity associated with the particulate fraction. This hormone-induced redistribution was found to be dose-dependent with an ED50 of 2 nM for angiotensin II, and it occurred rapidly, reaching a plateau within 5-10 min. It was prevented by the specific antagonist [Sar1,Ala8]angiotensin II. By contrast, stimulation with 12 mM KCl did not change the subcellular distribution of protein kinase C activity. These results suggest that redistribution of protein kinase C represents an early step in the post-receptor activation cascade following angiotensin II, but not potassium stimulation of adrenal glomerulosa cells.  相似文献   

11.
Insulin activates the Raf-1 protein kinase   总被引:9,自引:0,他引:9  
Several growth factors and mitogens have been shown to activate the proto-oncogene product Raf-1 protein kinase in murine fibroblasts, apparently through a direct agonist-stimulated tyrosine phosphorylation of the Raf-1 protein. We investigated the possibility that insulin could also activate the Raf-1 kinase, since its receptor also contains an intrinsic insulin-activated protein tyrosine kinase activity. In several cell lines expressing relatively large numbers of insulin receptors, insulin rapidly stimulated the phosphorylation of immunoreactive Raf-1 protein. In H35 cells, a line of well differentiated rat hepatoma cells, the effect of insulin was maximal by 6 min and at 7 nM insulin and occurred normally in cells virtually completely depleted of protein kinase C activity. The insulin-stimulated increase in Raf-1 protein phosphorylation occurred concurrently with a 3-fold increase in Raf-1 protein kinase activity. However, phosphoamino acid analysis showed that only phosphoserine and a trace of phosphothreonine were present in the Raf-1 protein after insulin stimulation of the cells. This was true even when investigated at shorter times (4 min) after insulin stimulation and despite the use of phosphotyrosine phosphatase inhibitors. We conclude that insulin can rapidly activate the Raf-1 kinase in some insulin-sensitive cell types but that this activation probably occurs through a mechanism distinct from direct phosphorylation of the Raf-1 protein by the insulin receptor protein tyrosine kinase.  相似文献   

12.
13.
R R Yassin  S N Murthy 《Peptides》1991,12(5):925-927
We examined the potential role of protein kinase C in signal transduction induced by gastrin's stimulation of rat colonic epithelium. Protein synthesis ([35S]methionine incorporation into protein) and enzyme activity (decrease in the cytosolic activity) were measured following epithelial stimulation with gastrin. Gastrin (10 nM) increased [35S]methionine incorporation into protein to 265% above maintenance level. The effect of gastrin was comparable to the stimulation induced by phorbol 12-myristate, 13-acetate (PMA), a strong activator of protein kinase C. The increase in protein synthesis induced by gastrin was totally abolished by 1-(5-isoquinolinyl)-2-methylpiperazine, an inhibitor of protein kinase C activity. Gastrin also decreased the cytosolic activity of the enzyme, an index of its activation and subsequent translocation to other cellular compartments. Therefore, we conclude that gastrin may be acting through a protein kinase C mechanism.  相似文献   

14.
Activation of alpha 1-adrenoceptors appears to amplify beta-adrenergic stimulation of cyclic AMP (cAMP) accumulation in rat pinealocytes severalfold by a mechanism involving activation of a Ca2+-, phospholipid-dependent protein kinase (protein kinase C). The mechanism of action of protein kinase C was investigated in this report using intact cells. Activation of protein kinase C with 4 beta-phorbol 12-myristate 13-acetate (PMA; 10(-7) M) or the alpha 1-adrenergic agonist phenylephrine (PE; 10(-6) M) did not inhibit cAMP efflux in beta-adrenergically stimulated cells. The amplification of the beta-adrenergic cAMP response by these agents also occurred in the presence of isobutylmethylxanthine (10(-3) M) and Ro 20-1724 (10(-4) M), an observation suggesting that inhibition of cAMP phosphodiesterase activity is not the mechanism of action. Furthermore, although PMA (10(-7) M) caused a sixfold increase in the magnitude of the cAMP response to isoproterenol, it did not alter the EC50 of the response (1.7 X 10(-8) M), a result indicating that protein kinase C activation does not alter beta-adrenoceptor sensitivity. The cAMP response following cholera toxin pretreatment (60-120 min) was rapidly and markedly enhanced by alpha 1-adrenergic agonists (cirazoline greater than PE greater than methoxamine), by phorbol esters (PMA greater than 4 beta-phorbol 12,13,-dibutyrate much greater than 4 alpha-phorbol 12,13-didecanoate), and by synthetic diacylglycerols (1,2-dioctanoylglycerol greater than 1-oleoyl 2-acetylglycerol much greater than diolein). The cAMP response to forskolin (10(-5)-10(-3) M) was also increased by PE (3 X 10(-6) M) and PMA (10(-7) M).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We investigated the effects of TH-142177 (N-n-butyl-N-[2'-(1-H-tetrazole-5-yl) biphenyl-4-yl]-methyl-(N-carboxy methyl-benzylamino)-acetamide), a novel selective antagonist of angiotensin II type 1-receptor (AT1-R) on angiotensin II (AII)-induced proliferation and migration of vascular smooth muscle cells (VSMC), and on neointimal formation in the rat carotid artery after balloon injury, and on the intracellular signaling by the stimulation of AT1-R. High affinity AII receptor sites were detected in rat VSMC by the use of [125I]Sar1,Ile8-AII. TH-142177 and losartan competed with [125I]Sar1,Ile8-AII for the binding sites in VSMC in a monophasic manner, although PD123177, a selective antagonist of angiotensin II type 2-receptor (AT2-R), had little inhibitory effect, demonstrating the predominant existence of AT1-R in rat VSMC. TH-142177 prevented AII-induced DNA synthesis and migration, with a significant inhibition of 74 and 55%, respectively, at the concentration of 100 nM. AII-induced activation of p21ras, mitogen-activated protein kinase (p42MAPK and p44MAPK), and protein kinase C was significantly (50-78%) inhibited by TH-142177 (100 nM), suggesting that the activation of these enzymes is mediated through the stimulation of AT1-R. Balloon-injured left carotid arteries in rats showed extensive neointimal thickening, and TH-142177 (3 mg/kg) brought out a marked decrease in the neointimal thickening after balloon injury. In conclusion, TH-142177 inhibited AII-induced proliferation and migration of rat VSMC and neointimal formation in the carotid artery after balloon injury, and these effects may be related, in part, to the suppression of ras, p42MAPK and p44MAPK, and protein kinase C activities through the blockade of AT1-R. Thus, TH-142177 may have therapeutic potential for the treatment of vascular diseases such as atherosclerosis and restenosis.  相似文献   

16.
The effect of different doses of luteinizing hormone on activation of protein kinases, cyclic AMP and testosterone production was studied in purified rat testis Leydig-cell preparations in the presence of 3-isobutyl-1-methylxanthine (a phosphodiesterase inhibitor). In addition, the nature of the protein kinases present in these cells and other tissues was investigated. The following results were obtained. 1. With all the amounts of luteinizing hormone used (0.1-1000 ng/ml), both activation of protein kinase and stimulation of testosterone production were demonstrated. With the lowest amount of luteinizing hormone (0.1 ng/ml), an 8.4+/-0.9% (S.E.M.,n=6) stimulation of protein kinase activation occurred, increasing to 100% with 1000 ng/ml, compared with 3.2+/-1.0%(S.E.M.,n=7) and 100% stimulation of testosterone production with 0.1 and 100 ng/ml respectively. 2. With amounts of luteinizing hormone up to 1 ng/ml (which gave half-maximal stimulation of testosterone production) no detectable increases in net cyclic AMP production were obtained. With higher amounts of luteinizing hormone, cyclic AMP production increased, but maximal production was not reached with 1000 ng/ml. 3. Two isoenzymic forms of protein kinase were present in Leydig cells and seminiferous tubules; type I was eluted with 0.075 M-and type II with 0.22-0.25 m-NaCl from DEAE-cellulose columns. 4. The protein kinase activity was not affected by the presence of erythrocytes in the Leydig-cell preparation, but varied depending on the type of histone used as substrate (histone F2b greater than mixed greater than histone F1).  相似文献   

17.
18.
Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ.  相似文献   

19.
The nature of cytosolic factors which modulate the activity of rat liver phosphatidylethanolamine (PE) methyltransferase was investigated. The combined additions of cytosol, Mg X ATP, and NaF to incubations with rat liver microsomes produced a 1.6-fold activation of the methyltransferase at pH 9.2 and a 1.3-fold stimulation at pH 7.0. Nonhydrolyzable 5'-adenylylimidodiphosphate could not substitute for ATP, although GTP could. The activation was time dependent, stable to reisolation of the microsomes by ultracentrifugation, and partially preventable by other cytosolic components. Despite these indications that PE methyltransferase might be a substrate for cytosolic protein kinases, cAMP and Ca2+-calmodulin exerted little influence on the activation reaction. Furthermore, microsomal PE methyltransferase activity was unaffected by purified preparations of cAMP-dependent protein kinase, calmodulin-dependent protein kinase, and casein kinase II, nor was methyltransferase activity influenced by the purified catalytic subunits of protein phosphatases 1 and 2A. Cytosol also contained inhibitors of PE methyltransferase which could overcome the Mg X ATP X NaF-mediated activation of the enzyme, but were not affected by the thermostable phosphatase inhibitors 1 and 2. Part of this inhibitory activity (apparent molecular mass of 15 X 10(3) daltons) was insensitive to trypsin and chymotrypsin, stimulated by Mn2+, and partly inhibited by NaF. Therefore, regulation of methyltransferase by reversible phosphorylation, while still a tenable hypothesis, is apparently more complex than previously proposed.  相似文献   

20.
Regulation of the mitogen-activated protein kinase (MAPK) family by prolactin-releasing peptide (PrRP) in both GH3 rat pituitary tumor cells and primary cultures of rat anterior pituitary cells was investigated. PrRP rapidly and transiently activated extracellular signal-regulated protein kinase (ERK) in both types of cells. Both pertussis toxin, which inactivates G(i)/G(o) proteins, and exogenous expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, completely blocked the PrRP-induced ERK activation, suggesting the involvement of G(i)/G(o) proteins in the PrRP-induced ERK activation. Down-regulation of cellular protein kinase C did not significantly inhibit the PrRP-induced ERK activation, suggesting that a protein kinase C-independent pathway is mainly involved. PrRP-induced ERK activation was not dependent on either extracellular Ca(2+) or intracellular Ca(2+). However, the ERK cascade was not the only route by which PrRP communicated with the nucleus. JNK was also shown to be significantly activated in response to PrRP. JNK activation in response to PrRP was slower than ERK activation. Moreover, to determine whether a MAPK family cascade regulates rat prolactin (rPRL) promoter activity, we transfected the intact rPRL promoter ligated to the firefly luciferase reporter gene into GH3 cells. PrRP activated the rPRL promoter activity in a time-dependent manner. Co-transfection with a catalytically inactive form of a MAPK construct or a dominant negative JNK, partially but significantly inhibited the induction of the rPRL promoter by PrRP. Furthermore, co-transfection with a dominant negative Ets completely abolished the response of the rPRL promoter to PrRP. These results suggest that PrRP differentially activates ERK and JNK, and both cascades are necessary to elicit rPRL promoter activity in an Ets-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号