首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Vav family of proteins have the potential to act as both signalling adapters and GEFs for Rho GTPases. They have therefore been proposed as regulators of the cytoskeleton in various cell types. We have used macrophages from mice deficient in all three Vav isoforms to determine how their function affects cell morphology and migration. Macrophages lacking Vav proteins adopt an elongated morphology and have enhanced migratory persistence in culture. To investigate the pathways through which Vav proteins exert their effects we analysed the responses of macrophages to the chemoattractant CSF-1 and to adhesion. We found that morphological and signalling responses of macrophages to CSF-1 did not require Vav proteins. In contrast, adhesion-induced cell spreading, RhoA and Rac1 activation and cell signalling were all dependent on Vav proteins. We propose that Vav proteins affect macrophage morphology and motile behaviour by coupling adhesion receptors to Rac1 and RhoA activity and regulating adhesion signalling events such as paxillin and ERK1/2 phosphorylation by acting as adapters.  相似文献   

2.
The tenascin gene family in axon growth and guidance   总被引:3,自引:0,他引:3  
  相似文献   

3.
A family of proteins implicated in axon guidance and outgrowth.   总被引:18,自引:0,他引:18  
Rapid progress in the identification and characterization of axon guidance molecules and their receptors has left the field poised to explore the intracellular mechanisms by which signals are transduced into growth cone responses. The TUC (TOAD/Ulip/CRMP) family of proteins has emerged as a strong candidate for a role in growth cone signaling. The TUC family members reach their highest expression levels in all neurons during their peak periods of axonal growth and are strongly down-regulated afterward. When axonal regrowth in the adult is triggered by axotomy, TUC-4 is reexpressed during the period of regrowth. Mutations in unc-33, a homologous nematode gene, lead to severe axon guidance errors in all neurons. Furthermore, the TUC family is required for the growth cone-collapsing activity of collapsin-1. An important role for the TUC family is also suggested by its high degree of interspecies amino acid sequence identity, with the rat TUC-2 protein showing 98% identity with its chick ortholog and 89% identity with its Xenopus ortholog. Information gained from the study of the TUC family will be of key importance in understanding how growth cones find their targets.  相似文献   

4.
5.
6.
Axon pathfinding relies on cellular signaling mediated by growth cone receptor proteins responding to ligands, or guidance cues, in the environment. Eph proteins are a family of receptor tyrosine kinases that govern axon pathway development, including retinal axon projections to CNS targets. Recent examination of EphB mutant mice, however, has shown that axon pathfinding within the retina to the optic disc is dependent on EphB receptors, but independent of their kinase activity. Here we show a function for EphB1, B2 and B3 receptor extracellular domains (ECDs) in inhibiting mouse retinal axons when presented either as substratum-bound proteins or as soluble proteins directly applied to growth cones via micropipettes. In substratum choice assays, retinal axons tended to avoid EphB-ECDs, while time-lapse microscopy showed that exposure to soluble EphB-ECD led to growth cone collapse or other inhibitory responses. These results demonstrate that, in addition to the conventional role of Eph proteins signaling as receptors, EphB receptor ECDs can also function in the opposite role as guidance cues to alter axon behavior. Furthermore, the data support a model in which dorsal retinal ganglion cell axons heading to the optic disc encounter a gradient of inhibitory EphB proteins which helps maintain tight axon fasciculation and prevents aberrant axon growth into ventral retina. In conclusion, development of neuronal connectivity may involve the combined activity of Eph proteins serving as guidance receptors and as axon guidance cues.  相似文献   

7.
Regulatory and signaling properties of the Vav family   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   

8.
Ephrin reverse signaling in axon guidance and synaptogenesis   总被引:1,自引:0,他引:1  
Axon-cell and axon-dendrite contact is a highly regulated process necessary for the formation of precise neural circuits and a functional neural network. Eph-ephrin interacting molecules on the membranes of axon nerve terminals and target dendrites act as bidirectional ligands/receptors to transduce signals into both the Eph-expressing and ephrin-expressing cells to regulate cytoskeletal dynamics. In particular, recent evidence indicates that ephrin reverse signal transduction events are important in controlling both axonal and dendritic elaborations of neurons in the developing nervous system. Here we review how ephrin reverse signals are transduced into neurons to control maturation of axonal pre-synaptic and dendritic post-synaptic structures.  相似文献   

9.
Patterning and axon guidance of cranial motor neurons   总被引:1,自引:0,他引:1  
  相似文献   

10.
Conservation and divergence of axon guidance mechanisms.   总被引:8,自引:0,他引:8  
Analysis of axon guidance mechanisms in vertebrates, Caenorhabditis elegans, and Drosophila melanogaster has led to the identification of several signaling pathways, many of which are strikingly conserved in function. Recent studies indicate that several axon guidance mechanisms are highly conserved in all animals, whereas others, though still conserved in a general sense, show strong evolutionary divergence at a detailed mechanistic level.  相似文献   

11.
Diffusible chemoattractants and chemorepellants, together with contact attraction and repulsion, have been implicated in the establishment of connections between neurons and their targets. Here we study how such diffusible and contact signals can be involved in the whole sequence of events from bundling of axons, guidance of axon bundles towards their targets, to debundling and the final innervation of individual targets. By means of computer simulations, we investigate the strengths and weaknesses of a number of particular mechanisms that have been proposed for these processes.  相似文献   

12.
13.
The vascular and nervous systems are organized with well defined and accurate networks, which represent the anatomical structure enabling their functions. In recent years, it has been clearly demonstrated that these two systems share in common several mechanisms and specificities. For instance, the networking properties of the nervous and vascular systems are governed by common cues that in the brain regulate axon connections and in the vasculature remodel the primitive plexus towards the vascular tree. Here, we summarize the role of semaphorins as a paradigmatic example of the role of axon guidance molecules in physiological and pathological angiogenesis. Finally, we discuss the presence in blood vessels of neurexin and neuroligin, two proteins that finely modulate synaptic activity in the brain. This observation is suggestive of an intriguing new class of molecular and functional parallels between neurons and vascular cells.  相似文献   

14.
Many zebrafish mutants have specific defects in axon guidance or synaptogenesis, particularly in the retinotectal and motor systems. Several mutants have now been characterized in detail and/or cloned. A combination of genetic studies, in vivo imaging and new techniques for misexpressing genes or blocking their function promises to reveal the molecules and principles that govern wiring of the vertebrate nervous system.  相似文献   

15.
Vav3 is a phosphorylation-dependent activator of Rho/Rac GTPases that has been implicated in hematopoietic, bone, cerebellar, and cardiovascular roles. Consistent with the latter function, Vav3-deficient mice develop hypertension, tachycardia, and renocardiovascular dysfunctions. The cause of those defects remains unknown as yet. Here, we show that Vav3 is expressed in GABAegic neurons of the ventrolateral medulla (VLM), a brainstem area that modulates respiratory rates and, via sympathetic efferents, a large number of physiological circuits controlling blood pressure. On Vav3 loss, GABAergic cells of the caudal VLM cannot innervate properly their postsynaptic targets in the rostral VLM, leading to reduced GABAergic transmission between these two areas. This results in an abnormal regulation of catecholamine blood levels and in improper control of blood pressure and respiration rates to GABAergic signals. By contrast, the reaction of the rostral VLM to excitatory signals is not impaired. Consistent with those observations, we also demonstrate that Vav3 plays important roles in axon branching and growth cone morphology in primary GABAergic cells. Our study discloses an essential and nonredundant role for this Vav family member in axon guidance events in brainstem neurons that control blood pressure and respiratory rates.  相似文献   

16.
Comm sorts robo to control axon guidance at the Drosophila midline   总被引:9,自引:0,他引:9  
Axon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends on the precisely regulated expression of the Comm sorting receptor.  相似文献   

17.
mRNA localization and regulated translation take central roles in axon guidance and synaptic plasticity. By spatially restricting gene expression within neurons, local protein synthesis provides growth cones and synapses with the capacity to autonomously regulate their structure and function. Studies in a variety of systems have provided insight into the specific roles of local protein synthesis during axonal navigation and during synaptic plasticity, and have begun to delineate the mechanisms underlying mRNA localization and regulated translation. Several powerful new tools have recently been developed to visualize each of these processes.  相似文献   

18.
A previous genetic screen led to the identification of the beaten path (beat Ia) gene in Drosophila. Beat Ia contains two immunoglobulin (Ig) domains and appears to function as an anti-adhesive factor secreted by specific growth cones to promote axon defasciculation. We identify a family of 14 beat-like genes in Drosophila. In contrast to beat Ia, four novel Beat-family genes encode membrane-bound proteins. Moreover, mutations in each gene lead to much more subtle guidance phenotypes than observed in beat Ia. Genetic interactions between beat Ic and beat Ia reveal complementary functions. Our data suggest a model whereby Beat Ic (and perhaps other membrane-bound family members) functions in a pro-adhesive fashion to regulate fasciculation, while Beat Ia (the original secreted Beat) functions in an anti-adhesive fashion to regulate defasciculation.  相似文献   

19.
20.
Neurobiology: New connections between integrins and axon guidance   总被引:7,自引:0,他引:7  
Axon guidance molecules such as netrins, semaphorins, Slits and ephrins provide the cues required for accurate patterning of axonal projections in the nervous system. Recent reports have described multiple paradigms by which these molecules interact with integrin adhesion receptors in and outside the neuronal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号