共查询到20条相似文献,搜索用时 15 毫秒
1.
Butterfield RJ Roper RJ Rhein DM Melvold RW Haynes L Ma RZ Doerge RW Teuscher C 《Genetics》2003,163(3):1041-1046
Susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination (TMEVD), a mouse model for multiple sclerosis (MS), is genetically controlled. Through a mouse-human comparative mapping approach, identification of candidate susceptibility loci for MS based on the location of TMEVD susceptibility loci may be possible. Composite interval mapping (CIM) identified quantitative trait loci (QTL) controlling TMEVD severity in male and female backcross populations derived from susceptible DBA/2J and resistant BALBc/ByJ mice. We report QTL on chromosomes 1, 5, 15, and 16 affecting male mice. In addition, we identified two QTL in female mice located on chromosome 1. Our results support the existence of three linked sex-specific QTL on chromosome 1 with opposing effects on the severity of the clinical signs of TMEV-induced disease in male and female mice. 相似文献
2.
3.
Baida G Popko B Wollmann RL Stavrou S Lin W Tretiakova M Krausz TN Roos RP 《Journal of virology》2008,82(12):5879-5886
The DA strain of Theiler's murine encephalomyelitis virus (TMEV) causes a persistent central nervous system (CNS) infection of mice with a restricted virus gene expression and induces an inflammatory demyelinating disease that is thought to be immune mediated and a model of multiple sclerosis (MS). The relative contribution of virus vis-à-vis the immune system in the pathogenesis of DA-induced white matter disease remains unclear, as is also true in MS. To clarify the pathogenesis of DA-induced demyelination, we used Cre/loxP technology to generate a transgenic mouse that has tamoxifen (Tm)-inducible expression of a subgenomic segment of DA RNA in oligodendrocytes and Schwann cells. Tm-treated young transgenic mice developed progressive weakness leading to death, with abnormalities of oligodendrocytes and Schwann cells and demyelination, but without inflammation, demonstrating that DA virus can play a direct pathogenic role in demyelination. Tm treatment of mice at a later age resulted in milder disease, with evidence of peripheral nerve remyelination and focal fur depigmentation; surviving weak mice had persistent expression of the recombined transgene in the CNS, suggesting that the DA subgenomic segment can cause cellular dysfunction but not death, possibly similar to the situation seen during DA virus persistence. These studies demonstrate that DA RNA or a DA protein(s) is toxic to myelin-synthesizing cells. This Cre/loxP transgenic system allows for spatially and temporally controlled expression of the viral transgene and is valuable for clarifying nonimmune (and immune) mechanisms of demyelination induced by TMEV as well as other viruses. 相似文献
4.
M Rodriguez A K Patick L R Pease C S David 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(3):921-927
Intracerebral infection of certain strains of mice with Theiler's virus results in chronic immune-mediated demyelination in spinal cord. We used mouse mutants with deletion of the V beta class of TCR genes to examine the role of TCR genes in this demyelinating disease which is similar to multiple sclerosis. Quantitative analysis of spinal cord lesions demonstrated a markedly increased number and extent of demyelinated lesions in persistently infected RIII S/J mice which have a massive deletion of the TCR V beta-chain (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, V beta 9, V beta 6, V beta 15, V beta 17) compared with B10.RIII mice which are of identical MHC haplotype (H-2r) but have normal complement of V beta TCR genes. In contrast, infection of C57L (H-2b) or C57BR (H-2k) mice which have deletion of the V beta TCR genes (V beta 5.2, V beta 8.3, V beta 5.1, V beta 8.2, V beta 5.3, V beta 8.1, V beta 13, V beta 12, V beta 11, and V beta 9) resulted in few demyelinating lesions. Genetic segregation analysis of (B10.RIII x RIII S/J) x RIII S/J backcrossed mice and (B10.RIII x RIII S/J) F2 mice demonstrated correlation of increased susceptibility to demyelination with deletion of TCR V beta genes. The increase in number of demyelinating lesions correlated with increase in number of virus-Ag+ cells in spinal cord. These experiments provide strong evidence that the structural diversity at the TCR beta-complex can influence susceptibility to virus-induced demyelination. 相似文献
5.
Expression of human HLA-B27 transgene alters susceptibility to murine Theiler's virus-induced demyelination 总被引:2,自引:0,他引:2
M Rodriguez C Nickerson A K Patick C S David 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(8):2596-2602
Infection of certain strains of mice with Theiler's murine encephalomyelitis virus results in persistence of virus and an immune-mediated primary demyelination in the central nervous system that resembles multiple sclerosis. Because susceptibility/resistance to demyelination in B10 congeneic mice maps strongly to class I MHC genes (D region) we tested whether expression of a human class I MHC gene (HLA-B27) would alter susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination. Transgenic HLA-B27 mice were found to co-express human and endogenous mouse class I MHC genes by flow microfluorimetry analysis of PBL. In the absence of the human transgene, H-2stf, or v mice but not H-2b mice had chronic demyelination and persistence of virus at 45 days after infection. No difference in degree of demyelination, meningeal inflammation, or virus persistence was seen between transgenic HLA-B27 and nontransgenic littermate mice of H-2f or H-2v haplotype. In contrast, H-2s (HLA-B27+) mice showed a dramatic decrease in extent of demyelination and number of virus-Ag+ cells in the spinal cord compared with H-2s (HLA-B27-) littermate mice. In addition, none of the eight H-2s mice homozygous for HLA-B27 gene had spinal cord lesions even though infectious virus was isolated chronically from their central nervous system. Expression of HLA-B27 transgene did not interfere with the resistance to demyelination normally observed in B10 (H-2b) mice. These experiments demonstrate that expression of a human class I MHC gene can modulate a virus-induced demyelinating disease process in the mouse. 相似文献
6.
R J Clatch R W Melvold S D Miller H L Lipton 《Journal of immunology (Baltimore, Md. : 1950)》1985,135(2):1408-1414
Intracranial inoculation of Theiler's murine encephalomyelitis virus (TMEV) leads to the development of a chronic demyelinating disorder in certain mouse strains. Development of this disease is controlled by at least two unlinked genes, one of which is within or linked to the H-2 complex. In the present study, we attempted to map the relevant H-2 loci involved in susceptibility to TMEV-induced demyelination using crosses between SJL and several congenic H-2 recombinant mouse strains bearing different combinations of MHC genes from the susceptible H-2s and resistant H-2b haplotypes all on the C57BL/10 strain background. The data suggest that the D region of the H-2 complex strongly influences development of the demyelinating disease because increased susceptibility correlates well with homozygosity for H-2s alleles in the D region, but not in K or I-A. In addition, we also attempted to correlate certain immune and nonimmune pathophysiologic parameters with the development of clinical disease. Specifically, central nervous system TMEV titers and TMEV-specific humoral and cellular [delayed-type hypersensitivity (DTH) and T cell proliferative (Tprlf)] responses were examined. The data show that TMEV-induced demyelinating disease did not correlate with either CNS TMEV titers or TMEV-specific humoral or Tprlf responses but did correlate closely with the presence of high levels of TMEV-specific DTH. Collectively, our findings demonstrating a strong correlation between disease incidence, the presence of particular H-2D region genotypes, and high levels of TMEV-specific DTH in susceptible strains (as well as previous findings showing predominant mononuclear cell infiltrates in CNS demyelinating lesions) support the hypothesis that the disease is immune mediated rather than a result of direct cytolytic effects of virus infection. 相似文献
7.
The predominant virus antigen burden is present in macrophages in Theiler's murine encephalomyelitis virus-induced demyelinating disease. 总被引:3,自引:12,他引:3 下载免费PDF全文
Theiler's murine encephalomyelitis virus (TMEV) produces a persistent central nervous system infection and chronic, inflammatory demyelinating disease in susceptible mice. TMEV antigen(s) and RNA genome have been detected in astrocytes, oligodendrocytes, and macrophages during persistence. Whether there is a predominant cell type in which TMEV persists has not been resolved. Since TMEV-induced demyelinating lesions are infiltrated with macrophages and a number of other persistent viruses show near-exclusive tropism for these phagocytic cells, we used two-color immunofluorescent staining with conventional and confocal microscopy to colocalize TMEV to cells that stain with monoclonal antibodies (MOMA-2) [unknown antigen], Mac-1 [CD11b], FA-11 [CD66], and 2F8 [scavenger receptor]) to macrophages in BeAn-infected SJL mice. A predominant virus antigen burden within macrophages infiltrating demyelinating lesions was seen. A dichotomy of cells staining for virus antigen(s) was found with infected cells containing either a large or small virus antigen load. Ninety percent of cells with a large virus antigen load were large phagocytes (20 to 50 microns) that were readily detected at low power (5x objective). Cells with smaller amounts of virus antigen(s) turned out to be either these same large phagocytic cells or much smaller cells, approximately equal to 10 microns in diameter. Forty percent of cells with a small virus antigen load were macrophages. The unidentified approximately equal to 10-microns cells that are virus antigen positive and macrophage negative in this study could still be macrophages, or they may be oligodendrocytes. The fact that virus was detected in the cytoplasm and not phagolysosomes of macrophages and the sheer mass of fluorescently stained virus proteins in some macrophages suggest that TMEV persists in these phagocytic cells by active virus replication. 相似文献
8.
Azoulay-Cayla A Dethlefs S Pérarnau B Larsson-Sciard EL Lemonnier FA Brahic M Bureau JF 《Journal of virology》2000,74(12):5470-5476
H-2(b) mice are resistant to persistent infection of the central nervous system by Theiler's virus. They clear the infection 7 to 10 days after intracranial inoculation. Resistance maps to the H-2D gene and not to the H-2K gene and is associated with a potent antiviral cytotoxic T-lymphocyte (CTL) response. We used H-2(b) mice in which the H-2D or the H-2K gene had been inactivated to dissect the respective roles of these genes in resistance. We report that H-2D(-/-) but not H-2K(-/-) mice were susceptible to persistent infection. Furthermore, whereas H-2K(-/-) mice mounted a vigorous virus-specific CTL response, similar to that of control C57BL/6 mice, the CTL response of H-2D(-/-) mice was nil or minimal. Using target cells transfected with the H-2D(b) or the H-2K(b) gene, we showed that the H-2K-restricted CTL response against the virus was minimal in H-2D(-/-) mice. These results demonstrate that the H-2D(b) and H-2K(b) genes play nonredundant roles in the resistance to this persistent infection. 相似文献
9.
C A Kappel M C Dal Canto R W Melvold B S Kim 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(12):4322-4326
Intracerebral inoculation of susceptible mice with Theiler's murine encephalomyelitis virus induces a demyelinating disease that is similar to human multiple sclerosis. This murine model for human multiple sclerosis is apparently immune-mediated and the genes involved in the immune response influence the outcome of disease susceptibility as observed with human multiple sclerosis. These genes include the MHC and TCR genes. However, the functional relationships among these genes on the disease susceptibility has not yet been studied. In this study, we demonstrate that the effect of the H-2s genotype from susceptible SJL/J mice overrides the resistant effect of the BALB/c TCR beta-chain gene in CXJ recombinant-inbred and BALB.S congenic mice. These results strongly suggest the presence of a hierarchy of genes involved in the immune response in Theiler's murine encephalomyelitis virus-induced demyelinating disease. 相似文献
10.
M Obuchi J Yamamoto N Uddin T Odagiri H Iizuka Y Ohara 《Microbiology and immunology》1999,43(9):885-892
GDVII subgroup strains of Theiler's murine encephalomyelitis virus (TMEV) are highly virulent and produce acute polioencephalomyelitis in mice. Neither viral persistence nor demyelination is demonstrated in the few surviving mice. In contrast, DA subgroup strains are less virulent and establish a persistent central nervous system infection which results in demyelinating disease. We previously reported a subgroup-specific infection in a macrophage-like cell line, J774-1 cells; i.e., GDVII strain does not replicate in J774-1 cells, whereas the DA strain actively replicates in these cells. In addition, this subgroup-specific virus growth is shown to be related to the presence of L* protein, a 17 kDa protein translated out-of-frame of the viral polyprotein from an AUG located 13 nucleotides downstream from the polyprotein's AUG. The present paper demonstrated that this subgroup-specific infection is observed in murine monocyte/macrophage lineage cell lines, but not in other murine cell lines including neural cells. An RNase protection assay also suggested that L* protein-related virus growth is regulated at the step of viral RNA replication. As macrophages are reported to be the major cell harboring virus during the chronic demyelinating stage, the activity of L* protein with respect to virus growth in macrophages may be a key factor in clarifying the mechanism(s) of TMEV persistence, which is probably a trigger to spinal cord demyelination. 相似文献
11.
12.
Inoue A Koh CS Yamazaki M Yagita H 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(11):6180-6186
We examined the role of B7-1 and B7-2, costimulatory molecules critical to full activation of T cells, in the development of Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Treatment with mAbs to B7-1 resulted in significant suppression of the development of this disease both clinically and histologically. In mice treated with these mAbs, the production of TNF-alpha and IFN-gamma in the spleen cells was decreased. The delayed-type hypersensitivity and T cell proliferative response specific for TMEV were decreased by this treatment. In contrast, treatment with Abs to B7-2, resulted in no effect on TMEV-IDD. These data suggest that B7-1 is critically involved in the pathogenesis of TMEV-IDD and that Abs to B7-1 could be a novel therapeutic approach in the clinical treatment of demyelinating diseases such as human multiple sclerosis. 相似文献
13.
Critical role for protein tyrosine phosphatase SHP-1 in controlling infection of central nervous system glia and demyelination by Theiler's murine encephalomyelitis virus 下载免费PDF全文
We previously characterized the expression and function of the protein tyrosine phosphatase SHP-1 in the glia of the central nervous system (CNS). In the present study, we describe the role of SHP-1 in virus infection of glia and virus-induced demyelination in the CNS. For in vivo studies, SHP-1-deficient mice and their normal littermates received an intracerebral inoculation of an attenuated strain of Theiler's murine encephalomyelitis virus (TMEV). At various times after infection, virus replication, TMEV antigen expression, and demyelination were monitored. It was found that the CNS of SHP-1-deficient mice uniquely displayed demyelination and contained substantially higher levels of virus than did that of normal littermate mice. Many infected astrocytes and oligodendrocytes were detected in both brains and spinal cords of SHP-1-deficient but not normal littermate mice, showing that the virus replicated and spread at a much higher rate in the glia of SHP-1-deficient animals. To ascertain whether the lack of SHP-1 in the glia was primarily responsible for these differences, glial samples from these mice were cultured in vitro and infected with TMEV. As in vivo, infected astrocytes and oligodendrocytes of SHP-1-deficient mice were much more numerous and produced more virus than did those of normal littermate mice. These findings indicate that SHP-1 is a critical factor in controlling virus replication in the CNS glia and virus-induced demyelination. 相似文献
14.
Identification of a locus on mouse chromosome 3 involved in differential susceptibility to Theiler's murine encephalomyelitis virus-induced demyelinating disease. 总被引:2,自引:3,他引:2 下载免费PDF全文
Theiler's virus-induced demyelinating disease results from a chronic infection in the white matter of the central nervous system and provides an excellent model for human multiple sclerosis. Like multiple sclerosis, there are genetic risk factors in disease development, including genes associated with the major histocompatibility complex and with those encoding the beta chain of the T-cell receptor. Comparisons of the susceptible DBA/2 and resistant C57BL/6 strains have indicated an important role for the H-2D locus and for a non-H-2 gene (not involving the beta chain of the T-cell receptor) in differential susceptibility. In the present report, analysis of recombinant-inbred strains (BXD) between the DBA/2 and C57BL/6 strains indicated that this non-H-2 locus is located at the centromeric end of chromosome 3 near (4 +/- 4 centimorgans) the carbonic anhydrase-2 (Car-2) enzyme locus. 相似文献
15.
L* protein of Theiler's murine encephalomyelitis virus is required for virus growth in a murine macrophage-like cell line 下载免费PDF全文
We sought to confirm the importance of L* protein for growth of Theiler's murine encephalomyelitis virus (TMEV) in a macrophage-like cell line, J774-1. The protein is out of frame with the polyprotein and synthesized in DA but not GDVII subgroup strains of TMEV. A recombinant virus, DANCL*/GD, which substitutes the DA 5' noncoding and L* coding regions for the corresponding regions of GDVII and synthesizes L* protein, grew with little restriction in J774-1 cells. In contrast, another recombinant virus, DANCL*-1/GD, which has an ACG rather than an AUG as the starting codon of L* protein at nucleotide 1079, resulting in no synthesis of L* protein, did not grow well. No significant difference between the rates of adsorption to J774-1 cells of these viruses was observed. RNase protection assay demonstrated that DANCL*/GD viral RNA significantly increased, whereas only a minimal increase was observed for DANCL*-1/GD. The present study suggests that L* protein is required for virus growth in macrophages. 相似文献
16.
Block MS Mendez-Fernandez YV Van Keulen VP Hansen MJ Allen KS Taboas AL Rodriguez M Pease LR 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(5):2756-2762
Natural selection drives diversification of MHC class I proteins, but the mechanism by which selection for polymorphism occurs is not known. New variant class I alleles differ from parental alleles both in the nature of the CD8 T cell repertoire formed and the ability to present pathogen-derived peptides. In the current study, we examined whether T cell repertoire differences, Ag presentation differences, or both account for differential viral resistance between mice bearing variant and parental alleles. We demonstrate that nonresponsive mice have inadequate presentation of viral Ag, but have T cell repertoires capable of mounting Ag-specific responses. Although previous work suggests a correlation between the ability to present an Ag and the ability to generate a repertoire responsive to that Ag, we show that the two functions of MHC class I are independent. 相似文献
17.
Trisna Tungadi Ruairí Donnelly Ling Qing Javaid Iqbal Alex M. Murphy Adrienne E. Pate Nik J. Cunniffe John P. Carr 《Molecular Plant Pathology》2020,21(2):250-257
Cucumber mosaic virus (CMV), which is vectored by aphids, has a tripartite RNA genome encoding five proteins. In tobacco (Nicotiana tabacum), a subgroup IA CMV strain, Fny-CMV, increases plant susceptibility to aphid infestation but a viral mutant unable to express the 2b protein (Fny-CMV∆2b) induces aphid resistance. We hypothesized that in tobacco, one or more of the four other Fny-CMV gene products (the 1a or 2a replication proteins, the movement protein, or the coat protein) are potential aphid resistance elicitors, whilst the 2b protein counteracts induction of aphid resistance. Mutation of the Fny-CMV 2b protein indicated that inhibition of virus-induced resistance to aphids (Myzus persicae) depends on amino acid sequences known to control nucleus-to-cytoplasm shuttling. LS-CMV (subgroup II) also increased susceptibility to aphid infestation but the LS-CMV∆2b mutant did not induce aphid resistance. Using reassortant viruses comprising different combinations of LS and Fny genomic RNAs, we showed that Fny-CMV RNA 1 but not LS-CMV RNA 1 conditions aphid resistance in tobacco, suggesting that the Fny-CMV 1a protein triggers resistance. However, the 2b proteins of both strains suppress aphid resistance, suggesting that the ability of 2b proteins to inhibit aphid resistance is conserved among divergent CMV strains. 相似文献
18.
19.
Mutation of predicted virion pit residues alters binding of Theiler's murine encephalomyelitis virus to BHK-21 cells 下载免费PDF全文
Theiler's murine encephalomyelitis virus (TMEV), a natural pathogen of mice, is a member of the genus Cardiovirus in the family Picornaviridae. Structural studies indicate that the cardiovirus pit, a deep depression on the surface of the virion, is involved in receptor attachment; however, this notion has never been systematically tested. Therefore, we used BeAn virus, a less virulent TMEV, to study the effect of site-specific mutation of selected pit amino acids on viral binding as well as other replicative functions of the virus. Four amino acids within the pit, V1091, P1153, A1225 and P3179, were selected for mutagenesis to evaluate their role in receptor attachment. Three amino acid replacements were made at each site, the first a conservative replacement, followed by progressively more radical amino acid changes in order to detect variable effects at each site. A total of seven viable mutant viruses were recovered and characterized for their binding properties to BHK-21 cells, capsid stability at 40 degrees C, viral RNA replication, single- and multistep growth kinetics, and virus translation. Our data implicate three of these residues in TMEV-cell receptor attachment. 相似文献
20.
FVB mice transgenic for the H-2Db gene become resistant to persistent infection by Theiler's virus. 总被引:3,自引:5,他引:3 下载免费PDF全文
The DA strain of Theiler's virus causes a persistent infection of the white matter of the spinal cord with chronic inflammation and primary demyelination. Inbred strains of mice differ greatly in their susceptibility to this disease. It has been shown that both viral persistence and demyelination are controlled mainly by a gene located in the H-2D region. This raised the possibility that the H-2D gene itself controls viral persistence, which in turn determines demyelination. In the present work we introduced the H-2Db gene of resistant C57BL/6 mice into the genome of susceptible H-2q FVB mice and showed that the FVB mice become resistant to persistence of the infection and did not develop inflammatory lesions. 相似文献