首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, although this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granular neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet, remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this review, we will review the biology of remyelination, including the cells and signals involved; describe when remyelination occurs and when and why it fails and the consequences of its failure; and discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.  相似文献   

2.
Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases.Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.  相似文献   

3.
Survival and differentiation of oligodendrocytes are important for the myelination of central nervous system (CNS) axons during development and crucial for myelin repair in CNS demyelinating diseases such as multiple sclerosis. Here we show that death receptor 6 (DR6) is a negative regulator of oligodendrocyte maturation. DR6 is expressed strongly in immature oligodendrocytes and weakly in mature myelin basic protein (MBP)-positive oligodendrocytes. Overexpression of DR6 in oligodendrocytes leads to caspase 3 (casp3) activation and cell death. Attenuation of DR6 function leads to enhanced oligodendrocyte maturation, myelination and downregulation of casp3. Treatment with a DR6 antagonist antibody promotes remyelination in both lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE) models. Consistent with the DR6 antagoinst antibody studies, DR6-null mice show enhanced remyelination in both demyelination models. These studies reveal a pivotal role for DR6 signaling in immature oligodendrocyte maturation and myelination that may provide new therapeutic avenues for the treatment of demyelination disorders such as multiple sclerosis.  相似文献   

4.
Accumulating evidence indicates that the medial prefrontal cortex (mPFC) is a site of myelin and oligodendrocyte abnormalities that contribute to psychotic symptoms of schizophrenia. The development of therapeutic approaches to enhance remyelination, a regenerative process in which new myelin sheaths are formed on demyelinated axons, may be an attractive remedial strategy. Geissoschizine methyl ether (GM) in the Uncaria hook, a galenical constituent of the traditional Japanese medicine yokukansan (Yi-gan san), is one of the active components responsible for the psychotropic effects of yokukansan, though little is known about the mechanisms underlying the effects of either that medicine or GM itself. In the present study, we employed a cuprizone (CPZ)-induced demyelination model and examined the cellular changes in response to GM administration during the remyelination phase in the mPFC of adult mice. Using the mitotic marker 5-bromo-2′-deoxyuridine (BrdU), we demonstrated that CPZ treatment significantly increased the number of BrdU-positive NG2 cells, as well as microglia and mature oligodendrocytes in the mPFC. Newly formed oligodendrocytes were increased by GM administration after CPZ exposure. In addition, GM attenuated a decrease in myelin basic protein immunoreactivity caused by CPZ administration. Taken together, our findings suggest that GM administration ameliorated the myelin deficit by mature oligodendrocyte formation and remyelination in the mPFC of CPZ-fed mice. The present findings provide experimental evidence supporting the role for GM and its possible use as a remedy for schizophrenia symptoms by promoting the differentiation of progenitor cells to and myelination by oligodendrocytes.  相似文献   

5.
Remyelination of demyelinated central nervous system (CNS) axons is considered as a potential treatment for multiple sclerosis, and it has been achieved in experimental models of demyelination by transplantation of pro-myelinating cells. However, the experiments undertaken have not addressed the need for tissue-type matching in order to achieve graft-mediated remyelination since they were performed in conditions in which the chance for graft rejection was minimized. This article focuses on the factors determining survival of allogeneic oligodendrocyte lineage cells and their contribution to the remyelination of demyelinating CNS lesions. The immune status of the CNS as well as the suitability of different models of demyelination for graft rejection studies are discussed, and ways of enhancing allogeneic oligodendrocyte-mediated remyelination are presented. Finally, the effects of glial graft rejection on host remyelination are described, highlighting the potential benefits of the acute CNS inflammatory response for myelin repair.  相似文献   

6.
Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies.  相似文献   

7.
8.
Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane‐anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'‐3'‐cyclic nucleotide 3'‐phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt‐Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin‐induced demyelination animal model. Taken together, the membrane‐anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries. genesis 52:341–349, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
Various animal models are available for studying human multiple sclerosis (MS). Most of them model the initial phase of MS,including the immune-triggered attack of the myelin membrane and/or oligodendrocytes and, occasionally, demonstrate there mission and relapsing phases. However, few mimic the late chronic demyelinating phase. Overexpression of the proteolipid protein gene (Plp) causes a unique demyelinating disorder in mice in which normal-appearing myelin forms early in life and chronic demyelination occurs later. We found that remyelination is severely affected in this late demyelinating phase, but is not caused by deprivation of oligodendrocyte progenitors expressing PDGF receptor alpha (PDGFRa) and Olig2, which are present at an even higher number in the demyelinated white matter of the mutants than in wild-type controls. Furthermore, mature oligodendrocytes containing PLP were observed, but failed to remyelinate. The ability of oligodendrocytes from older transgenic animals to produce a myelin membrane-like structure was not impaired when cultured in vitro, which indicates that the lack of remyelination is not simply caused by changes in the intrinsic properties of the oligodendrocytes. Glial activation also occurred much earlier than active demyelination in mutant mice. Thus, in addition to intrinsic mechanisms, extrinsic mechanisms might also have an important role in defects of remyelination. These features are also observed in patients at a late stage of MS, leading to chronic demyelinating lesions. Thus, this mouse model partly mimics the late stage of MS and can be used to study the cause of inhibition of remyelination.  相似文献   

11.
Rosenbluth  Jack  Schiff  Rolf  Liang  Wei-Lan  Dou  Wenkai 《Brain Cell Biology》2003,32(3):265-276
We showed previously that spinal cord implants of hybridoma cells (O1) that secrete an IgM antigalactocerebroside cause focal multiple-sclerosis-like plaques of demyelination followed by remyelination to form “shadow plaques” (Rosenbluth et al., 1999). The antibody in that case was directed against a glycolipid present in mature oligodendrocytes and myelin but not in precursor cells. We now report the effects of implanting a different hybridoma (O4) that secretes IgM antibodies directed against sulfatide, a constituent not only of mature myelin and oligodendrocytes but also of late precursor cells, in order to determine whether this hybridoma too would generate focal demyelination and would, in addition, block remyelination. Our results show that focal plaques of demyelination indeed appear after O4 implantation, and that remyelination does occur, but only in cases where the hybridoma cells have degenerated, probably through host rejection. The occurrence of remyelination suggests that oligodendrocyte precursor cells are capable of migrating in rapidly from adjacent areas or that early precursors, not yet expressing sulfatide, remain undamaged within the lesions. In cases where intact hybridoma cells persist at lesion sites, remyelination does not occur. Failure of remyelination in this model thus appears to result from the continuing presence of antimyelin antibodies rather than from depletion of oligodendrocyte precursors.  相似文献   

12.
The processes of myelination remain incompletely understood but are of profound biomedical importance owing to the several dysmyelinating and demyelinating disorders known in humans. Here, we analyze the zebrafish puma mutant, isolated originally for pigment pattern defects limited to the adult stage. We show that puma mutants also have late-arising defects in Schwann cells of the peripheral nervous system, locomotor abnormalities, and sex-biased defects in adult craniofacial morphology. Using methods of positional cloning, we identify a critical genetic interval harboring two alpha tubulin loci, and we identify a chemically induced missense mutation in one of these, tubulin alpha 8-like 3a (tuba8l3a). We demonstrate tuba8l3a expression in the central nervous system (CNS), leading us to search for defects in the development of oligodendrocytes, the myelinating cells of the CNS. We find gross reductions in CNS myelin and oligodendrocyte numbers in adult puma mutants, and these deficits are apparent already during the larval-to-adult transformation. By contrast, analyses of embryos and early larvae reveal a normal complement of oligodendrocytes that nevertheless fail to localize normal amounts of myelin basic protein (mbp) mRNA in cellular processes, and fail to organize these processes as in the wild-type. This study identifies the puma mutant as a valuable model for studying microtubule-dependent events of myelination, as well as strategies for remyelination in the adult.  相似文献   

13.

Background

Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP) may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP) expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz.

Methodology/Principal Findings

We found an early onset of the expression of myelin basic protein (MBP), a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE) induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG) peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis.

Conclusions/Significance

Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS) development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.  相似文献   

14.
To examine the remyelinating ability of post-mitotic oligodendrocytes, we subjected cell preparations derived from neonatal and adult rats to 40 Grays of X-irradiation to remove mitotically active cells and injected them into areas of demyelination in which the inherent ability to generate remyelinating cells had been inhibited. The extensive remyelination seen following implantation of non-irradiated neonatal and adult cells was almost completely abolished when the transplanted cell suspension was exposed to 40 Grays of X-irradiation, demonstrating that effective remyelination requires the generation of cells by mitosis. Radiation-resistant and therefore non-dividing oligodendrocytes were detected in areas of demyelination following transplantation of neonatal cultures and oligodendrocyte preparations derived from the adult nervous system. However, the pattern of myelin formation associated with the radiation-resistant oligodendrocytes from the two sources was different. Following implantation of X-irradiated neonatal cultures, a small number of oligodendrocytes could be found within the area of demyelination, and although these cells formed sheets of myelin membrane, they did not form myelin sheaths. After implantation of X-irradiated adult cells, in addition to the aberrant myelin formation seen with the neonatal cells, some myelin sheaths were observed. Our findings confirm that effective remyelination requires cell division and suggest that there may be diverse populations of radiation-resistant oligodendrocytes in the adult nervous system, some of which can form myelin sheaths and others of which can only make myelin sheets. Important for the interpretation of our previous studies is the demonstration here that 40 Grays of X-irradiation per se does not inhibit oligodendrocytes from remyelinating axons.  相似文献   

15.
The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination.  相似文献   

16.
Myelin is critical in maintaining electrical impulse conduction in the central nervous system. The oligodendrocyte is the cell type responsible for myelin production within this compartment. The mutual supply of trophic support between oligodendrocytes and the underlying axons may indicate why demyelinated axons undergo degeneration more readily; the latter contributes to the neural decline in multiple sclerosis (MS). Myelin repair, termed remyelination, occurs in acute inflammatory lesions in MS and is associated with functional recovery and clinical remittances. Animal models have demonstrated that remyelination is mediated by oligodendrocyte progenitor cells (OPCs) which have responded to chemotactic cues, migrated into the lesion, proliferated, differentiated into mature oligodendrocytes, and ensheathed demyelinated axons. The limited remyelination observed in more chronic MS lesions may reflect intrinsic properties of neural cells or extrinsic deterrents. Therapeutic strategies currently under development include transplantation of exogenous OPCs and promotion of remyelination by endogenous OPCs. All currently approved MS therapies are aimed at dampening the immune response and are not directly targeting neural processes.  相似文献   

17.
The cellular and molecular events of central nervous system remyelination   总被引:2,自引:0,他引:2  
Central nervous system (CNS)* regeneration is a subject of great interest, particularly in diseases causing a dramatic loss of neurons. However, some CNS diseases do not affect neurons but damage other cells, such as the myelin-forming cells--called oligodendrocytes--which are also crucial to the harmonious function of the nervous system. Diseases in which oligodendrocytes and myelin are attacked can cause devastating neurological dysfunction which is sometimes followed by recovery and myelin repair or remyelination. The question of the regeneration potential of oligodendrocytes in experimental and human demyelinating diseases such as multiple sclerosis has been debated for a long time. Present evidence suggests that oligodendrocyte precursor cells persist in the adult CNS and that oligodendrocyte regeneration can occur but may be limited by ongoing disease processes. Here we will briefly review recent advances which have broadened our understanding of the cellular and molecular events of CNS remyelination.  相似文献   

18.
19.
The specific functions of intrinsic regulators of oligodendrocyte progenitor cell (OPC) division are poorly understood. Type 2 cyclin-dependent kinase (Cdk2) controls cell cycle progression of OPCs, but whether it acts during myelination and repair of demyelinating lesions remains unexplored. Here, we took advantage of a viable Cdk2(-/-) mutant mouse to investigate the function of this cell cycle regulator in OPC proliferation and differentiation in normal and pathological conditions. During central nervous system (CNS) development, Cdk2 loss does not affect OPC cell cycle, oligodendrocyte cell numbers, or myelination. However, in response to CNS demyelination, it clearly alters adult OPC renewal, cell cycle exit, and differentiation. Importantly, Cdk2 loss accelerates CNS remyelination of demyelinated axons. Thus, Cdk2 is dispensable for myelination but is important for adult OPC renewal, and could be one of the underlying mechanisms that drive adult progenitors to differentiate and thus regenerate myelin.  相似文献   

20.
Elucidation of the mechanisms involved in the regeneration of oligodendrocytes and remyelination is a central issue in multiple sclerosis (MS) research. We recently identified a novel alternatively spliced, developmentally regulated oligodendrocyte-specific protein designated microtubule-associated protein-2+13 [microtubule-associated protein-2 expressing exon 13 (MAP-2+13)]. MAP-2+13 is expressed in human fetal oligodendrocytes during process extension and myelination but is minimally expressed in normal mature CNS. To test the hypothesis that MAP-2+13 is reexpressed in regenerating oligodendrocytes in MS lesions, we examined the brains of MS patients for the expression of this protein. By immunocytochemistry using a series of monoclonal antibodies specific for MAP-2+13, we determined that MAP-2+13 expression was up-regulated in all 31 lesions from 10 different MS brains. MAP-2+13 was expressed in regenerating oligodendrocytes associated with demyelinated lesions, with the highest counts found in regions of extensive remyelination. By electron microscopy, MAP-2+13 was localized to oligodendrocytes engaged in remyelination, evident by their process extension and association with thinly myelinated (remyelinated) and demyelinated axons. These results suggest a hitherto unsuspected role for this microtubule-associated protein in oligodendrocyte function during development and myelin repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号