首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prospective cohort study was performed to evaluate the prevalences and loads of Salmonella and Campylobacter spp. in farm and processing plant samples collected from 55 commercial broiler chicken flocks. Environmental samples were collected from broiler houses within 48 h before slaughter, and carcass rinses were performed on birds from the same flocks at 4 different stages of processing. Salmonella was detected in farm samples of 50 (90.9%) flocks and in processing samples of 52 (94.5%) flocks. Campylobacter was detected in farm samples of 35 (63.6%) flocks and in processing samples of 48 (87.3%) flocks. There was a significant positive relationship between environmental farm samples and processing plant carcass rinses with respect to both Salmonella and Campylobacter prevalences and loads. Campylobacter loads were significantly higher than Salmonella loads, and the correlations between samples collected from the same flocks were higher for Campylobacter than they were for Salmonella. Boot socks were the most sensitive sample type for detection of Salmonella on the farm, whereas litter samples had the strongest association with Salmonella loads in pre- and postchill carcass rinses. Boot socks, drag swabs, and fecal samples all had similar sensitivities for detecting Campylobacter on the farm, and all were more strongly associated with Campylobacter loads in carcass rinses than were litter samples. Farm samples explained a greater proportion of the variability in carcass rinse prevalences and loads for Campylobacter than they did for Salmonella. Salmonella and Campylobacter prevalences and loads both decreased significantly as birds progressed through the processing plant.  相似文献   

2.
3.
Broiler flocks often become infected with Campylobacter and Salmonella, and the exact contamination routes are still not fully understood. Insects like darkling beetles and their larvae may play a role in transfer of the pathogens between consecutive cycles. In this study, several groups of beetles and their larvae were artificially contaminated with a mixture of Salmonella enterica serovar Paratyphi B Variant Java and three C. jejuni strains and kept for different time intervals before they were fed to individually housed chicks. Most inoculated insects were positive for Salmonella and Campylobacter just before they were fed to the chicks. However, Campylobacter could not be isolated from insects that were kept for 1 week before they were used to mimic an empty week between rearing cycles. All broilers fed insects that were inoculated with pathogens on the day of feeding showed colonization with Campylobacter and Salmonella at levels of 50 to 100%. Transfer of both pathogens by groups of insects that were kept for 1 week before feeding to the chicks was also observed, but at lower levels. Naturally contaminated insects that were collected at a commercial broiler farm colonized broilers at low levels as well. In conclusion, the fact that Salmonella and Campylobacter can be transmitted via beetles and their larvae to flocks in successive rearing cycles indicates that there should be intensive control programs for exclusion of these insects from broiler houses.  相似文献   

4.
Contamination of retail poultry by Campylobacter spp. and Salmonella enterica is a significant source of human diarrheal disease. Isolation and identification of these microorganisms require a series of biochemical and serological tests. In this study, Campylobacter ceuE and Salmonella invA genes were used to design probes in PCR-enzyme-linked immunosorbent assay (ELISA), as an alternative to conventional bacteriological methodology, for the rapid detection of Campylobacter jejuni, Campylobacter coli, and S. enterica from poultry samples. With PCR-ELISA (40 cycles), the detection limits for Salmonella and Campylobacter were 2 × 102 and 4 × 101 CFU/ml, respectively. ELISA increased the sensitivity of the conventional PCR method by 100- to 1,000-fold. DNA was extracted from carcass rinses and tetrathionate enrichments and used in PCR-ELISA for the detection of Campylobacter and S. enterica, respectively. With PCR-ELISA, Salmonella was detected in 20 of 120 (17%) chicken carcass rinses examined, without the inclusion of an enrichment step. Significant correlation was observed between PCR-ELISA and cultural methods (kappa = 0.83; chi-square test, P < 0.001) with only one false negative (1.67%) and four false positives (6.67%) when PCR-ELISA was used to screen 60 tetrathionate enrichment cultures for Salmonella. With PCR-ELISA, we observed a positive correlation between the ELISA absorbance (optical density at 405 nm) and the campylobacter cell number in carcass rinse, as determined by standard culture methods. Overall, PCR-ELISA is a rapid and cost-effective approach for the detection and enumeration of Salmonella and Campylobacter bacteria on poultry.  相似文献   

5.
The influence of transport, catching, and processing on contamination of broiler chickens with Salmonella and Campylobacter was investigated. Transport crates were reused with high frequency and were often still contaminated with Salmonella and Campylobacter when they arrived at the farm despite the fact that they were washed at the factory, and thus they were a potential route of infection. These organisms contaminated the feathers of previously Campylobacter- and Salmonella-negative birds going to the processing plant and were isolated from processed carcasses, albeit at a low frequency. The Campylobacter types which were the predominant organisms on the live birds when they arrived at the processing plant were not necessarily the types that were most frequently isolated from processed carcasses. This finding may reflect cross-contamination that occurred during processing or differences in the tolerance of the strains to the hostile environments that the bacteria experienced. The process of catching and putting the birds in crates significantly increased the chance of contamination with Campylobacter (P < 0.001).  相似文献   

6.
A total of 825 samples of retail raw meats (chicken, turkey, pork, and beef) were examined for the presence of Escherichia coli and Salmonella serovars, and 719 of these samples were also tested for Campylobacter spp. The samples were randomly obtained from 59 stores of four supermarket chains during 107 sampling visits in the Greater Washington, D.C., area from June 1999 to July 2000. The majority (70.7%) of chicken samples (n = 184) were contaminated with Campylobacter, and a large percentage of the stores visited (91%) had Campylobacter-contaminated chickens. Approximately 14% of the 172 turkey samples yielded Campylobacter, whereas fewer pork (1.7%) and beef (0.5%) samples were positive for this pathogen. A total of 722 Campylobacter isolates were obtained from 159 meat samples; 53.6% of these isolates were Campylobacter jejuni, 41.3% were Campylobacter coli, and 5.1% were other species. Of the 212 chicken samples, 82 (38.7%) yielded E. coli, while 19.0% of the beef samples, 16.3% of the pork samples, and 11.9% of the turkey samples were positive for E. coli. However, only 25 (3.0%) of the retail meat samples tested were positive for Salmonella. Significant differences in the bacterial contamination rates were observed for the four supermarket chains. This study revealed that retail raw meats are often contaminated with food-borne pathogens; however, there are marked differences in the prevalence of such pathogens in different meats. Raw retail meats are potential vehicles for transmitting food-borne diseases, and our findings stress the need for increased implementation of hazard analysis of critical control point (HACCP) and consumer food safety education efforts.  相似文献   

7.
The existence of Campylobacter and Salmonella reservoirs in wildlife is a potential hazard to animal and human health; however, the prevalence of these species is largely unknown. Until now, only a few studies have evaluated the presence of Campylobacter and Salmonella in wild griffon vultures and based on a small number of birds. The aim of this study was to evaluate the presence of Campylobacter and Salmonella in wild griffon vultures (n = 97) during the normal ringing programme at the Cinctorres Observatory in Eastern Spain. In addition, the effect of ages of individuals (juveniles, subadult and adult) on the presence were compared. Campylobacter was isolated from 1 of 97 (1.0%) griffon vultures and identified as C. jejuni. Salmonella was isolated from 51 of 97 (52.6%) griffon vultures. No significant differences were found between the ages of individuals for the presence of Salmonella. Serotyping revealed 6 different serovars among two Salmonella enterica subspecies; S. enterica subsp. enterica (n = 49, 96.1%) and S. enterica subsp. salamae (n = 2, 3.9%). No more than one serovar was isolated per individual. The serovars isolated were S. Typhimurium (n = 42, 82.3%), S. Rissen (n = 4, 7.8%), S. Senftenberg (n = 3, 5.9%) and S. 4,12:b[-] (n = 2, 3.9%). Our results imply that wild griffon vultures are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out vultures as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results.  相似文献   

8.
Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 103 cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 102 Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users.  相似文献   

9.
Two wastewater natural reclamation systems (WWNRS) have been compared regarding their efficiencies on faecal bacteria removal and the persistence of enteric pathogens. These WWNRS are constituted of a combination of anaerobic treatment, small sub-surface flow constructed wetland refilled of volcanic ashes and a final pond as water reservoir. Faecal coliforms, enterococci, Escherichia coli, Clostridium perfringens, somatic coliphages, Salmonella sp., Campylobacter sp., Cryptosporidium sp., Giardia sp. and helminth eggs were analyzed in constructed wetlands inlet and outlet and storage pond effluent. Low numbers of protozoan positive samples (4.54% in Albergue de Bolico for both protozoa, and 19.05% in Carrizal Alto for Giardia sp.) and absence of helminth eggs were found. Both systems demonstrated efficient reduction of faecal contamination indicators in the wastewaters (removal rates values of 2 log10). The natural systems for wastewater treatment used to be efficient in Salmonella abatement, this fact was confirmed in the reported systems, since enterobacteriaceae were found in only one of the effluents. Campylobacter species associated with the access of animals to storage ponds were detected in the reclaimed water.  相似文献   

10.
A study was conducted to determine the influence of arbuscular mycorrhizal (AM) fungi on Salmonella and enterohemorrhagic Escherichia coli O157:H7 (EHEC) in autoclaved soil and translocation into leek plants. Six-week-old leek plants (with [Myc+] or without [Myc−] AM fungi) were inoculated with composite suspensions of Salmonella or EHEC at ca. 8.2 log CFU/plant into soil. Soil, root, and shoot samples were analyzed for pathogens on days 1, 8, 15, and 22 postinoculation. Initial populations (day 1) were ca. 3.1 and 2.1 log CFU/root, ca. 2.0 and 1.5 log CFU/shoot, and ca. 5.5 and 5.1 CFU/g of soil for Salmonella and EHEC, respectively. Enrichments indicated that at days 8 and 22, only 31% of root samples were positive for EHEC, versus 73% positive for Salmonella. The mean Salmonella level in soil was 3.4 log CFU/g at day 22, while EHEC populations dropped to ≤0.75 log CFU/g by day 15. Overall, Salmonella survived in a greater number of shoot, root, and soil samples, compared with the survival of EHEC. EHEC was not present in Myc− shoots after day 8 (0/16 samples positive); however, EHEC persisted in higher numbers (P = 0.05) in Myc+ shoots (4/16 positive) at days 15 and 22. Salmonella, likewise, survived in statistically higher numbers of Myc+ shoot samples (8/8) at day 8, compared with survival in Myc− shoots (i.e., only 4/8). These results suggest that AM fungi may potentially enhance the survival of E. coli O157:H7 and Salmonella in the stems of growing leek plants.  相似文献   

11.
Rivers may serve as reservoirs for enteric organisms. Very little is known about the boundaries of microbial communities in moving bodies of water so this study was undertaken to find the limits of distribution of some bacteria, focusing on enteric organisms. The presence of Salmonella, Campylobacter, and Enterococcus spp. and the antimicrobial resistance phenotypes carried by these organisms was evaluated for the Upper Oconee River basin, a small river in the lower Piedmont of northeastern Georgia, USA. Samples were obtained from 83 sites during a 3-h period on a spring day (April 2005) in an approximately 30 × 20 km region. Campylobacter spp. was isolated at 12 sites. The Campylobacter isolates from three sites were resistant to tetracycline. Of the five short-variable region (SVR) subtypes of Campylobacter that were found, three were found at more than one site, two types were found twice, and one subtype was found three times. Enterococcus was isolated at 71 sites. E. casseliflavus was the most common species. Based on species identification and antimicrobial resistance patterns, 24 types of Enterococcus were found. Salmonella was isolated from 62 sites. Of the 19 Salmonella serovars that were isolated, serovar Muenchen accounted for about 20% of the isolates. The next three most common serovars isolated, Rubislaw, Hartford, and Give, accounted for about 44% of the river isolates. Antimicrobial resistance profiling offered limited differentiation of Salmonella isolates because only seven isolates were resistant to any antimicrobial. The sites at which Salmonella, Campylobacter, or Enterococcus were isolated did not correlate with each other or with the total coliform number or Escherichia coli count for the site. However, isolates of some of the same species and type occurred in clusters that were restricted to areas within 5 to 6 km.  相似文献   

12.
In 2009, the European Centre for Disease Prevention and Control initiated the ‘Burden of Communicable Diseases in Europe (BCoDE)’ project to generate evidence-based and comparable burden-of-disease estimates of infectious diseases in Europe. The burden-of-disease metric used was the Disability-Adjusted Life Year (DALY), composed of years of life lost due to premature death (YLL) and due to disability (YLD). To better represent infectious diseases, a pathogen-based approach was used linking incident cases to sequelae through outcome trees. Health outcomes were included if an evidence-based causal relationship between infection and outcome was established. Life expectancy and disability weights were taken from the Global Burden of Disease Study and alternative studies. Disease progression parameters were based on literature. Country-specific incidence was based on surveillance data corrected for underestimation. Non-typhoidal Salmonella spp. and Campylobacter spp. were used for illustration. Using the incidence- and pathogen-based DALY approach the total burden for Salmonella spp. and Campylobacter spp. was estimated at 730 DALYs and at 1,780 DALYs per year in the Netherlands (average of 2005–2007). Sequelae accounted for 56% and 82% of the total burden of Salmonella spp. and Campylobacter spp., respectively. The incidence- and pathogen-based DALY methodology allows in the case of infectious diseases a more comprehensive calculation of the disease burden as subsequent sequelae are fully taken into account. Not considering subsequent sequelae would strongly underestimate the burden of infectious diseases. Estimates can be used to support prioritisation and comparison of infectious diseases and other health conditions, both within a country and between countries.  相似文献   

13.
Campylobacter spp. are regarded as the most common bacterial cause of gastroenteritis worldwide, and consumption of chicken meat contaminated by Campylobacter is considered to be one of the most frequent sources of human infection in developed countries. Here we evaluated the immunogenicity and protective efficacy of Salmonella Typhimurium χ9718 producing the Campylobacter jejuni CjaA protein as a chicken anti-Campylobacter vaccine. In this study chickens were orally immunized with a new generation S. Typhimurium strain χ9718 with regulated delayed attenuation in vivo and displaying delayed antigen expression. The immunization with the S. Typhimurium χ9718 strain producing C. jejuni CjaA antigen induced strong immune responses against CjaA in both serum IgY and intestinal IgA, however, it did not result in the significant reduction of intestinal colonization by Campylobacter strain. The low level of protection might arise due to a lack of T cell response. Our results demonstrated that a Salmonella strain with regulated delayed attenuation and displaying regulated delayed antigen expression might be an efficient vector to induce immune response against Campylobacter. It seems that an efficient anti-Campylobacter subunit vaccine should be multicomponent. Since S. Typhimurium χ9718 contains two compatible balanced-lethal plasmids, it can provide the opportunity of cloning several Campylobacter genes encoding immunodominant proteins. It may also be used as a delivery vector of eukaryotic genes encoding immunostimulatory molecules to enhance or modulate functioning of chicken immune system.  相似文献   

14.
From February to November 2007, chicken meat preparations (n = 656) were sampled at 11 processing companies across Belgium. All samples were tested for Campylobacter by enrichment culture and by direct plating according to standard methods. Almost half (48.02%) of the samples were positive for Campylobacter spp. The mean Campylobacter count was 1.68 log10 CFU/g with a standard deviation of ± 0.64 log10 CFU/g. The study revealed a statistically significant variation in Campylobacter contamination levels between companies; processors with a wider frequency distribution range of Campylobacter counts provided chicken meat preparations with higher Campylobacter incidences and concentrations. There was no significant difference between the counts of Campylobacter spp. in various preparation types. However, the Campylobacter counts and incidences in chicken wings were the highest and portioned-form products (legs, wings, and breasts) showed a higher probability of being Campylobacter positive compared to minced-form products (sausages, burgers, and minced meat). The proportion of Campylobacter-positive samples was significantly higher in July than in other months. Recovery of Campylobacter spp. recovery by direct plating was higher (41.0%) compared to detection after enrichment (24.2%). Statistical modeling of the survey data showed that the likelihood of obtaining a positive result by enrichment culture increases with an increase in the Campylobacter concentration in the sample. In the present study, we provide the first enumeration data on Campylobacter contamination in Belgian chicken meat preparations and address proposals for improving Campylobacter monitoring programs.  相似文献   

15.
Aims: To determine the counts and/or prevalence in fresh bovine faeces of Escherichia coli, enterococci, Campylobacter, Salmonella, shiga toxin‐producing E. coli (STEC), Giardia and Cryptosporidium, as inputs to numerical models designed to estimate microbial loadings on pasture grazed by cattle in New Zealand. Methods and Results: In each season over one year, samples of freshly deposited bovine faeces were collected from four New Zealand dairy farms (n = 155), and enumerated for E. coli, enterococci, Campylobacter, Giardia and Cryptosporidium. They were also tested for the presence of Salmonella and STEC. The overall median bacterial counts (g?1 wet weight) were E. coli– 5·9 × 106; enterococci – 1·3 × 104; Campylobacter– 3·9 × 105. All counts were highly variable within and between samplings, and few seasonal or regional patterns emerged. However, mean Campylobacter counts were consistently higher in spring. No Salmonella spp. was detected, and only two samples were positive for STEC. Cryptosporidium and Giardia were isolated from 5·2% and 4·5% of the samples, respectively, yielding low numbers of (oo)cysts (1–25 g?1 and 1–17 g?1, respectively). Conclusions: Fresh bovine faeces are a significant source of E. coli, enterococci and Campylobacter on New Zealand pastures, although numbers are likely to vary markedly between faecal samples. Significance and Impact of the Study: The study provides the first significant set of indicator and pathogen counts for one of the largest sources of faecal contamination of natural waters in New Zealand, and will be used to model these inputs.  相似文献   

16.
This study assessed the levels of two key pathogens, Salmonella and Campylobacter, along with the indicator organism Escherichia coli in aerosols within and outside poultry sheds. The study ranged over a 3-year period on four poultry farms and consisted of six trials across the boiler production cycle of around 55 days. Weekly testing of litter and aerosols was carried out through the cycle. A key point that emerged is that the levels of airborne bacteria are linked to the levels of these bacteria in litter. This hypothesis was demonstrated by E. coli. The typical levels of E. coli in litter were ∼108 CFU g−1 and, as a consequence, were in the range of 102 to 104 CFU m−3 in aerosols, both inside and outside the shed. The external levels were always lower than the internal levels. Salmonella was only present intermittently in litter and at lower levels (103 to 105 most probable number [MPN] g−1) and consequently present only intermittently and at low levels in air inside (range of 0.65 to 4.4 MPN m−3) and once outside (2.3 MPN m−3). The Salmonella serovars isolated in litter were generally also isolated from aerosols and dust, with the Salmonella serovars Chester and Sofia being the dominant serovars across these interfaces. Campylobacter was detected late in the production cycle, in litter at levels of around 107 MPN g−1. Campylobacter was detected only once inside the shed and then at low levels of 2.2 MPN m−3. Thus, the public health risk from these organisms in poultry environments via the aerosol pathway is minimal.Bacterial aerosols can originate from different sources, each representing a unique aerosol environment. The generation of these aerosols can occur during common agricultural practices such as the spray irrigation of wastewater (13), and the land application of biosolids (7). Biological material in air does not necessarily occur as independent particles (22), and the survival of particulate matter linked bacteria can vary with particle size and prevailing atmospheric conditions (27). In addition to the natural variation of bacteria that occur in the general atmosphere (26), the creation, generation, and disposal of human and animal wastes can increase the potential of microbial pathogens entering the aerosol environment (32). Animal production systems such as broiler farms have been the focus of attention as potential sources of human pathogens entering the general environment and thus eventually the human food chain. Much of this focus has been on the land application of manures (30) rather than via the aerosol pathway.The production of aerosols from various sources is generally linked to risks to adjacent communities. In recent times, there has been research into the impacts of bioaerosols released directly from swine production systems (39). Similarly, studies have also been carried out to assess community risk of infection from bioaerosols to residents adjacent to sites associated with the application of biosolids (6).The poultry production environment is widely accepted as one that is likely to be a source of human pathogens such as Salmonella (15) and Campylobacter (46), with potential for these organisms to enter the aerosol environment during the production cycle. It is also likely that the prevalence of these pathogens within the production environment could vary. Typically, broilers demonstrate fecal shedding of Campylobacter at around 3 weeks of age and within 2 to 4 days of shedding, flocks show a 90 to 100% prevalence rate due to rapid intraflock transmission rates (36). For Salmonella, the estimates of the incidence have been quite variable (16). As an example, there was a 42% prevalence for Salmonella in 198 U.S. broiler houses (9). As a general pattern, Salmonella can be isolated from a variety of sources (other than the bird) and at various stages of the production cycle (25).Modern broiler houses reflect considerable progress in design, with the majority of poultry houses in countries such as the United States and Australia being tunnel ventilated (23). In these systems, large volumes of air are moved through the house, by negative pressure, to provide the optimal temperature for broiler growth (23). Clearly, these large volumes of moving air could potentially contain a range of bacteria sourced from the internal environment of the house, including pathogens such as Salmonella and Campylobacter.To date, there have been few studies specifically examining the levels of bacteria, including pathogens, in the air either inside or outside tunnel ventilated broiler sheds. In a Bulgarian study of mechanically ventilated sheds, levels of 1.68 × 107 bacteria/m3 of air were found inside the sheds (4). Salmonella has been recovered but not quantified in the air inside a room containing experimentally infected laying hens (17) and Campylobacter has been detected inside and outside broiler houses in United Kingdom (8, 9). Other than these few studies, there appear to have been no reports of studies attempting to quantify the levels of key pathogens such as Campylobacter and Salmonella in the air in and around broiler houses through the production cycle. Such studies would allow an assessment of the quantifiable risks (if any) to public health and the surrounding environments via the aerosol pathway.The present study, carried out over 3 years, addresses this issue of aerosolized bacterial pathogens in terms of assessing levels, observing patterns of distribution, as well as the possible interrelationships, leading to pathogen presence in aerosols. More specifically, we quantified the levels of Salmonella, Campylobacter, and Escherichia coli (the latter as an indicator organism) within the chicken production environment, through whole production cycles, in both internal and external aerosols on four broiler farms.  相似文献   

17.
We compared six procedures and investigated the optimal method for isolation of Campylobacter spp. from raw meat samples. Ninety-nine meat samples were enriched in Bolton broth and Preston broth, followed by plating on Skirrow, mCCDA, and blood agar (a membrane filter on its surface) media, respectively. Thirty-nine of 99 samples were positive and 71 Campylobacter were isolated by one or more methods. More than one species of Campylobacter were obtained in 8 (20.5 %) of 39 positive samples and two genotypes were yielded on the same medium (11 samples, 28.2 %) by pulsed-field gel electrophoresis (PFGE) genotyping. Enrichment by Preston broth was significantly better than by Bolton broth (P?<?0.05). Moreover, the latter failed to detect Campylobacter jejuni strains. Skirrow medium was significantly less efficient than mCCDA medium and membrane filtration method (P?<?0.05). Overall, the combination of PC (primary enrichment in Preston broth, followed by selective enrichment on mCCDA agar), PF (primary enrichment in Preston broth, followed by membrane filtration culture onto blood agar), and BF (primary enrichment in Bolton broth, followed by membrane filtration culture onto blood agar) methods provided the optimum isolation rate of Campylobacter spp.  相似文献   

18.

Background

Although rotavirus is the leading cause of severe diarrhea among children in sub-Saharan Africa, better knowledge of circulating enteric pathogenic bacteria and their antimicrobial resistance is crucial for prevention and treatment strategies.

Methodology/Principal Findings

As a part of rotavirus gastroenteritis surveillance in Maradi, Niger, we performed stool culture on a sub-population of children under 5 with moderate-to-severe diarrhea between April 2010 and March 2012. Campylobacter, Shigella and Salmonella were sought with conventional culture and biochemical methods. Shigella and Salmonella were serotyped by slide agglutination. Enteropathogenic Escherichia coli (EPEC) were screened by slide agglutination with EPEC O-typing antisera and confirmed by detection of virulence genes. Antimicrobial susceptibility was determined by disk diffusion. We enrolled 4020 children, including 230 with bloody diarrhea. At least one pathogenic bacterium was found in 28.0% of children with watery diarrhea and 42.2% with bloody diarrhea. Mixed infections were found in 10.3% of children. EPEC, Salmonella and Campylobacter spp. were similarly frequent in children with watery diarrhea (11.1%, 9.2% and 11.4% respectively) and Shigella spp. were the most frequent among children with bloody diarrhea (22.1%). The most frequent Shigella serogroup was S. flexneri (69/122, 56.5%). The most frequent Salmonella serotypes were Typhimurimum (71/355, 20.0%), Enteritidis (56/355, 15.8%) and Corvallis (46/355, 13.0%). The majority of putative EPEC isolates was confirmed to be EPEC (90/111, 81.1%). More than half of all Enterobacteriaceae were resistant to amoxicillin and co-trimoxazole. Around 13% (46/360) Salmonella exhibited an extended-spectrum beta-lactamase phenotype.

Conclusions

This study provides updated information on enteric bacteria diversity and antibiotic resistance in the Sahel region, where such data are scarce. Whether they are or not the causative agent of diarrhea, bacterial infections and their antibiotic resistance profiles should be closely monitored in countries like Niger where childhood malnutrition pre-disposes to severe and invasive infections.  相似文献   

19.
Recent outbreaks of food-borne illness associated with the consumption of produce have increased concern over wildlife reservoirs of food-borne pathogens. Wild rodents are ubiquitous, and those living close to agricultural farms may pose a food safety risk should they shed zoonotic microorganisms in their feces near or on agricultural commodities. Fecal samples from wild rodents trapped on 13 agricultural farms (9 produce, 3 cow-calf operations, and 1 beef cattle feedlot) in Monterey and San Benito Counties, CA, were screened to determine the prevalence and risk factors for shedding of several food-borne pathogens. Deer mice (Peromyscus maniculatus) were the most abundant rodent species trapped (72.5%). Cryptosporidium species (26.0%) and Giardia species (24.2%) were the predominant isolates from rodent feces, followed by Salmonella enterica serovars (2.9%) and Escherichia coli O157:H7 (0.2%). Rodent trap success was significantly associated with detection of Salmonella in rodent feces, while farm type was associated with fecal shedding of Cryptosporidium and Giardia. Seasonal shedding patterns were evident, with rodents trapped during the spring and summer months being significantly less likely to be shedding Cryptosporidium oocysts than those trapped during autumn. Higher rodent species diversity tended to correlate with lower fecal microbial prevalence, and most spatiotemporal pathogen clusters involved deer mice. Rodents in the study area posed a minimal risk as environmental reservoirs of E. coli O157:H7, but they may play a role in environmental dissemination of Salmonella and protozoa. Rodent control efforts that potentially reduce biodiversity may increase pathogen shedding, possibly through promotion of intraspecific microbial transmission.  相似文献   

20.
Campylobacter is a food-borne zoonotic pathogen that causes human gastroenteritis worldwide. Campylobacter bacteria are commensal in the intestines of many food production animals, including ducks and chickens. The objective of the study was to determine the prevalence of Campylobacter species in domestic ducks, and the agar dilution method was used to determine resistance of the isolates to eight antibiotics. In addition, multilocus sequence typing (MLST) was performed to determine the sequence types (STs) of selected Campylobacter isolates. Between May and September 2012, 58 duck farms were analyzed, and 56 (96.6%) were positive for Campylobacter. Among the isolates, 82.1% were Campylobacter jejuni, 16.1% were C. coli, and one was unidentified by PCR. Of the 46 C. jejuni isolates, 87.0%, 10.9%, and 21.7% were resistant to ciprofloxacin, erythromycin, and azithromycin, respectively. Among the C. coli isolates, all 9 strains were resistant to ampicillin, and 77.8% and 33.3% were resistant to ciprofloxacin and azithromycin, respectively. The majority of the Campylobacter isolates were classified as multidrug resistant. Twenty-eight STs were identified, including 20 STs for C. jejuni and 8 STs for C. coli. The most common clonal complexes in C. jejuni were the ST-21 complex and the ST-45 complex, while the ST-828 complex predominated in C. coli. The majority of isolates were of STs noted in ducks and humans from earlier studies, along with seven STs previously associated only with human disease. These STs overlapped between duck and human isolates, indicating that Campylobacter isolates from ducks should be considered potential sources of human infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号