首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
4.
5.
6.
7.
Despite its efficacy against malaria, the relatively low yield (0.01%-0.8%) of artemisinin in Artemisia annua is a serious limitation to the commercialization of the drug. A better understanding of the biosynthetic pathway of artemisinin and its regulation by both exogenous and endogenous factors is essential to improve artemisinin yield. Increasing evidence has shown that microRNAs (miRNAs) play multiple roles in various biological processes. In this study, we used previously known miRNAs from Arabidopsis and rice against expressed sequence tag (EST) database of A. annua to search for potential miRNAs and their targets in A. annua. A total of six potential miRNAs were predicted, which belong to the miR414 and miR1310 families. Furthermore, eight potential target genes were identified in this species. Among them, seven genes encode proteins that play important roles in ar- temisinin biosynthesis, including HMG-CoA reductase (HMGR), amorpha-4,11-diene synthase (ADS), farnesyl pyrophosphate synthase (FPS) and cytochrome P450. In addition, a gene coding for putative AINTEGUMENTA, which is involved in signal transduction and development, was also predicted as one of the targets. This is the first in silico study to indicate that miRNAs target genes encoding enzymes involved in artemisinin biosynthesis, which may help to understand the miRNA-mediated regulation of artemisinin biosynthesis in A. annua.  相似文献   

8.
Jasmonates (JAs) are a class of plant hormones that play important roles in the regulation of plant development and plant defense. It has been shown that Arabidopsis plants produce much higher levels of anthocyanins when treated exogenously with methyl jasmonate (MeJA). However, a molecular link between the JA response and anthocyanin production has not been determined. The CORONATINE INSENTITIVE1 (COI1) gene is a key player in the regulation of many JA-related responses. In the present study, we demonstrate that the COI1 gene is also required for the JA-induced accumulation of anthocyanins in Arabidopsis. Furthermore, the MeJA-inducible expression of DIHYDROFLAVONOL REDUCTASE (DFR), an essential component in the anthocyanin biosynthesis pathway, was completely eliminated in the coil mutant. Jasmonateinduced anthocyanin accumulation was found to be independent of auxin signaling. The present results indicate that the expression of both COI1 and DFR genes is required for the regulation of JA-induced anthocyanin accumulation and that DFR may be a key downstream regulator for this process.  相似文献   

9.
Plant height is an important trait in cotton. To elucidate the molecular mechanisms of the dwarf phenotype, a sterile-dwarf mutant derived from Gossypium arboreum L. cv. Jinhuazhongmian was developed by ^60Co y-ray irradiation. The results demonstrated that the steriledwarf mutant phenotype was controlled by a pair of recessive gene, which was designated sd^a. Plants carrying the sd^a gene contained lower levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) compared with wild-type (WT) plants. The chlorophyll content and net photosynthetic rate in mutant leaves were markedly decreased. However, it was possible that ABA biosynthesis or signaling was involved in governing the sd^a phenotype. Semi-quantitative RT-PCR analysis detected 13 differentially expressed ESTs, and the steriledwarf mutant exhibited decreased expression levels relative to the WT. The role of nine potential hormone biosynthetic genes in the synthesis of IAA, ABA, polyamines (PAs) and jasmonic acid (JA) were discussed.  相似文献   

10.
11.
12.
Bacterial proliferation in hosts requires activation of a number of housekeeping pathways, including purine de novo biosynthesis. Although inactivation of purine biosynthesis genes can attenuate virulence, it is unclear which biochemical or virulence factors are associated with the purine biosynthesis pathway in vivo. We report that inactivation of purC, a gene encoding phosphoribosylaminoimidazole-succinocarboxamide synthase, caused complete loss of virulence in Xanthomonas campestris pv. cam- pestris, the causal agent of black rot disease of cruciferous plants. The purC mutant was a purine auxotroph; it could not grow on minimal medium, whereas addition of purine derivatives, such as hypoxanthine or adenine plus guanine, restored growth of the mutant. The purC mutation also significantly enhanced the production of an unknown purine synthesis associated pigment and extracellular polysaccharides by the bacterium. In addition, comparative proteomic analyses of bacteria grown on rich and minimal media revealed that the purC mutation affected the expression levels of diverse proteins involved in purine and pyrimidine synthesis, carbon and energy metabolisms, iron uptake, proteolysis, protein secretion, and signal transduction. These results provided clues to understanding the contributions of purine synthesis to bacterial virulence and interactions with host immune systems.  相似文献   

13.
Camalexin (3-thiazol-2 -yl-indole) is the major phytoalexin found in Arabidopsis thaliana. Several key intermediates and corresponding enzymes have been identified in camalexin biosynthesis through mutant screening and biochemical experiments. Camalexin is formed when indole-3-acetonitrile (IAN) is catalyzed by the cytochrome P450 monooxygenase CYP71A13. Here, we demonstrate that the Ara- bidopsis GH3.5 protein, a multifunctional acetyl-amido synthetase, is involved in camalexin biosynthesis via conjugating indole-3-carboxylic acid (ICA) and cysteine (Cys) and regulating camalexin biosynthesis genes. Camalexin levels were increased in the activation-tagged mutant gh3.5-1D in both Col-0 and cyp71A13-2 mutant backgrounds after pathogen infection. The recombinant GH3.5 protein catalyzed the conjugation of ICA and Cys to form a possible intermediate indole-3-acyl-cysteinate (ICA(Cys)) in vitro. In support of the in vitro reaction, feeding with ICA and Cys increased camalexin levels in Col-0 and gh3.5-1D. Dihydrocamalexic acid (DHCA), the precursor of camalexin and the substrate for PAD3, was accumulated in gh3.5-1D/pad3-1, suggesting that ICA(Cys) could be an additional precursor of DHCA for camalexin biosynthesis. Furthermore, expression of the major camalexin biosynthesis genes CYP79B2, CYP71A12, CYP71A13 and PAD3 was strongly induced in gh3.5-1D. Our study suggests that GH3.5 is involved in camalexin biosynthesis through direct catalyzation of the formation of ICA(Cys), and upregulation of the major biosynthetic pathway genes.  相似文献   

14.
15.
16.
17.
18.
19.
Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regu- lated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abiltd) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abiltd mutant was compen- sated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evi- dence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号