首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The plant-pathogenic bacterium Xanthomonas citri subsp. citri is the causal agent of Asiatic citrus canker, a serious disease that affects all the cultivars of citrus in subtropical citrus-producing areas worldwide. There is no curative treatment for citrus canker; thus, the eradication of infected plants constitutes the only effective control of the spread of X. citri subsp. citri. Since the eradication program in the state of São Paulo, Brazil, is under threat, there is a clear risk of X. citri subsp. citri becoming endemic in the main orange-producing area in the world. Here we evaluated the potential use of alkyl gallates to prevent X. citri subsp. citri growth. These esters displayed a potent anti-X. citri subsp. citri activity similar to that of kanamycin (positive control), as evaluated by the resazurin microtiter assay (REMA). The treatment of X. citri subsp. citri cells with these compounds induced altered cell morphology, and investigations of the possible intracellular targets using X. citri subsp. citri strains labeled for the septum and centromere pointed to a common target involved in chromosome segregation and cell division. Finally, the artificial inoculation of citrus with X. citri subsp. citri cells pretreated with alkyl gallates showed that the bacterium loses the ability to colonize its host, which indicates the potential of these esters to protect citrus plants against X. citri subsp. citri infection.  相似文献   

3.
【目的】探明不同地理种群的柑橘木虱Diaphorina citri Kuwayama和柑橘粉虱Dialeurodes citri Ashmead体内昆虫内共生菌的种类及其感染率,并以Wolbachia共生菌为代表,对其系统发育关系进行分析,为今后自共生菌角度研发柑橘木虱和柑橘粉虱的新型防控技术奠定基础。【方法】以16S r DNA、23S r DNA以及wsp为目标基因,利用PCR技术检测采自于广州、湛江、南宁、桂林、厦门的柑橘木虱以及采自广州的柑橘粉虱体内共生菌的种类及其感染率;利用多位点序列分型(MLST)技术和MEGA 5.0软件对不同昆虫样本中的Wolbachia进行系统发育关系分析。【结果】本研究采集的柑橘木虱和柑橘粉虱均含有原生共生菌Portiera和次生共生菌Wolbachia、Cardinium、Rickettsia,但该3种次生共生菌在不同木虱与粉虱种群的感染率有所不同;Arsenophonus只在广州和湛江种群的柑橘木虱中检出。基于wsp基因及MLST基因序列的Wolbachia系统发育分析表明,华南地区柑橘木虱和柑橘粉虱体内的Wolbachia均属于Wolbachia的B大组Con亚组。【结论】不同地理种群的柑橘木虱与柑橘粉虱体内感染的共生菌种类及其感染率不同;Wolabchia共生菌与柑橘木虱寄主不存在协同进化关系,在同一采集点存在Wolbachia通过柑橘寄主在柑橘木虱之间、柑橘木虱与柑橘粉虱之间水平传播的可能性。  相似文献   

4.
5.
An C  Mou Z 《PloS one》2012,7(1):e31130
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology.  相似文献   

6.
7.
We provide the first conclusive evidence that Xanthomonas axonopodis pv. citri Asiatic strain (Xac-A) and, in particular, Xac-Aw, a unique citrus canker A strain isolated from Key lime in Wellington, Florida, induces a hypersensitive reaction (HR) in grapefruit leaves. Using the heterologous tomato pathogen X. perforans , as a recipient of the Xac-Aw genomic library, we identified a 1599-bp open reading frame responsible for HR in grapefruit, but not Key lime, and designated it avrGf 1. Xac-AwΔ avrGf 1 produced typical, although visibly reduced, citrus canker symptoms (i.e. raised pustules) in grapefruit and typical canker symptoms in Key lime. We also determined that the X. perforans transconjugant carrying an Xac-Aw hrpG elicited HR in grapefruit and Key lime leaves, and that xopA in X. perforans was partly responsible for HR. Xac-A transconjugants carrying the X. perforans xopA were reduced in ability to grow in grapefruit leaves relative to wild-type Xac-A. The X. perforans xopA appears to be a host-limiting factor. An avrBs3 homologue, which contained 18.5 repeats and induced HR in tomato, was designated avrTaw . This gene, when expressed in a pustule-minus Xac-Aw, did not complement pustule formation; however, pthAw , a functional pthA homologue, complemented the mutant strain to produce typical pustules in Key lime, but markedly reduced pustules in grapefruit. Both avrBs3 homologues, when expressed in a typical Xac-A strain, resulted in typical citrus canker pustules in grapefruit, indicating that neither homologue suppressed pustule size in grapefruit. Xac-Aw contains other unidentified factors that suppress development in grapefruit.  相似文献   

8.
9.
Microorganisms with biocontrol capabilities against plant pathogens are considered as one of the most promising approaches for healthy crop management. In this study, ethyl acetate extracts of 25 Bacillus strains were investigated for their antagonistic effect on Xanthomonas citri subsp. citri (Xcc), which causes the citrus bacterial canker (CBC) disease. Among them, 21 strains exerted antibacterial activity against wild-type Xcc strains. Based on the strength of the antibacterial activity, nine Bacillus strains were selected for 16S rRNA analysis. 16S rRNA sequence homology revealed that several strains were closely related to B. velezensis, where strains with no antibacterial activity grouped as the soil-associated community of B. amyloliquefaciens. B. velezensis Bv-21 exhibited the highest antibacterial activity against wild type and streptomycin resistant Xcc with inhibition zones of 22.91 ± 0.45 and 20.28 ± 0.53, respectively. Furthermore, B. velezensis Bv-21 strain was tested for biocontrol activity against a streptomycin-resistant XccM4 in detached susceptible citrus leaves. The strain reduced the incidence of CBC by 26.30% and pathogen density of XccM4 by 81.68% over control. The results of the study strongly suggest that B. velezensis can be used as an effective and eco-friendly biocontrol agent either by itself or as an active compound, against both, the wild-type and streptomycin-resistant Xcc.  相似文献   

10.
【目的】鉴定柑橘溃疡病菌胞外水解酶减弱突变体Mxac56-20的Tn5插入位点,及其在柑橘上的致病力。【方法】采用质粒拯救方法获得Tn5旁侧序列,与基因组信息比对后明确突变体的插入位点;构建功能互补载体对突变体进行功能互补,检测互补菌株胞外蛋白水解酶、纤维素酶和淀粉酶的恢复情况;在寄主植物柑橘上观察致病力变化。【结果】Mxac56-20的Tn5插入位点是II型分泌系统xpsD基因,所构建的互补载体使突变体的胞外水解酶活性和致病力得到恢复。【结论】柑橘溃疡病菌xpsD基因的突变,导致胞外水解酶活性降低,在寄主上的致病力减弱,说明柑橘溃疡病菌的II型分泌系统在与寄主互作过程中起到致病因子的作用。  相似文献   

11.
We screened the genome of Xanthomonas citri pv. citri strain 306 for tandem repeats. A multiplex polymerase chain reaction protocol was used to assess the genetic diversity of 239 strains of X. citri pv. citri from Asia. The total number of alleles per locus ranged from three to 20. Using pooled data sets, 223 different haplotypes were identified. Successful amplifications were obtained at most loci for seven other X. citri pathovars. This typing scheme is expected to be useful at different spatial scales for population studies of pathovars of X. citri, several of which cause plant diseases of economic importance.  相似文献   

12.
Taxonomic status : Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range : Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties : Xcc is a rod‐shaped (1.5–2.0 × 0.5–0.75 µm), Gram‐negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution : Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe.  相似文献   

13.
Xanthomonas citri subsp. citri causes citrus canker disease, which is characterized by the formation of water-soaked lesions, white or yellow spongy pustules and brown corky canker. In this work, we report the contribution of extracellular endoglucanase to canker development during infection. The ectopic expression of nine putative cellulases in Escherichia coli indicated that two endoglucanases, BglC3 and EngXCA, show carboxymethyl cellulase activity. Both bglC3 and engXCA genes were transcribed in X. citri subsp. citri, however, only BglC3 protein was detected outside the cell in western blot analysis. The deletion of bglC3 gene resulted in complete loss of extracellular carboxymethyl cellulase activity and delayed the onset of canker symptoms in both infiltration- and wound-inoculation assays. When growing in plant tissue, the cell density of bglC3 mutant was lower than that of the wild type. Our data demonstrated that BglC3 is an extracellular endoglucanase required for the full virulence of X. citri subsp. citri.  相似文献   

14.
Citrus canker is caused by Xanthomonas citri subsp. citri and is one of the most devastating diseases on citrus plants. To investigate the virulence mechanism of this pathogen, a mutant library of strain 306 containing approximately 22,000 mutants was screened for virulence-deficient mutants in grapefruit (Citrus paradise). Eighty-two genes were identified that contribute to citrus canker symptom development caused by X. citri subsp. citri. Among the 82 identified genes, 23 genes were classified as essential genes, as mutation of these genes caused severe reduction of bacterial growth in M9 medium. The remaining 59 genes were classified as putative virulence-related genes that include 32 previously reported virulence-related genes and 27 novel genes. The 32 known virulence-related genes include genes that are involved in the type III secretion system (T3SS) and T3SS effectors, the quorum-sensing system, extracellular polysaccharide and lipopolysaccharide synthesis, and general metabolic pathways. The contribution to pathogenesis by nine genes (pthA4, trpG, trpC, purD, hrpM, peh-1, XAC1230, XAC1548, and XAC3049) was confirmed by complementation assays. We further validated the mutated genes and their phenotypes by analyzing the EZ-Tn5 insertion copy number using Southern blot analysis. In conclusion, we have significantly advanced our understanding of the putative genetic determinants of the virulence mechanism of X. citri subsp. citri by identifying 59 putative virulence-related genes, including 27 novel genes.  相似文献   

15.
Xanthomonas citri : breaking the surface   总被引:3,自引:0,他引:3  
  相似文献   

16.
Spiroplasma citri is a plant-pathogenic mollicute. Recently, the so-called nonphytopathogenic S. citri mutant GMT 553 was obtained by insertion of transposon Tn4001 into the first gene of the fructose operon. Additional fructose operon mutants were produced either by gene disruption or selection of spontaneous xylitol-resistant strains. The behavior of these spiroplasma mutants in the periwinkle plants has been studied. Plants infected via leafhoppers with the wild-type strain GII-3 began to show symptoms during the first week following the insect-transmission period, and the symptoms rapidly became severe. With the fructose operon mutants, symptoms appeared only during the fourth week and remained mild, except when reversion to a fructose+ phenotype occurred. In this case, the fructose+ revertants quickly overtook the fructose- mutants and the symptoms soon became severe. When mutant GMT 553 was complemented with the fructose operon genes that restore fructose utilization, severe pathogenicity, similar to that of the wild-type strain, was also restored. Finally, plants infected with the wild-type strain and grown at 23 degrees C instead of 30 degrees C showed late symptoms, but these rapidly became severe. These results are discussed in light of the role of fructose in plants. Fructose utilization by the spiroplasmas could impair sucrose loading into the sieve tubes by the companion cells and result in accumulation of carbohydrates in source leaves and depletion of carbon sources in sink tissues.  相似文献   

17.
18.
The replication region (oriC) of the Spiroplasma citri chromosome has been recently sequenced, and a 2-kbp DNA fragment was characterized as an autonomously replicating sequence (F. Ye, J. Renaudin, J. M. Bové, and F. Laigret, Curr. Microbiol. 29:23-29, 1994). In the present studies, we have combined this DNA fragment, containing the dnaA gene and the flanking dnaA boxes, with a ColE1-derived Escherichia coli replicon and the Tet M determinant, which confers resistance to tetracycline. The recombinant plasmid, named pBOT1, was introduced into S. citri cells, in which it replicated. Plasmid pBOT1 was shuttled from E. coli to S. citri and back to E. coli. In S. citri, replication of pBOT1 did not require the presence of a functional dnaA gene on the plasmid. However, the dnaA box region downstream of the dnaA gene was essential. Upon passaging of the S. citri transformants, the plasmid integrated into the spiroplasmal host chromosome by recombination at the replication origin. The integration process led to duplication of the oriC sequences. In contrast to the integrative pBOT1, plasmid pOT1, which does not contain the E. coli replicon, was stably maintained as a free extrachromosomal element. Plasmid pOT1 was used as a vector to introduce into S. citri the G fragment of the cytadhesin P1 gene of Mycoplasma pneumoniae and the spiralin gene of Spiroplasma phoeniceum. The recombinant plasmids, pOTPG with the G fragment and pOTPS with the spiralin gene, were stably maintained in spiroplasmal transformants. Expression of the heterologous S. phoeniceum spiralin in S. citri was demonstrated by Western immunoblotting.  相似文献   

19.
Xanthomonas citri pv. citri strain 306 (Xcc306), a causative agent of citrus canker, produces endoxylanases that catalyze the depolymerization of cell wall-associated xylans. In the sequenced genomes of all plant-pathogenic xanthomonads, genes encoding xylanolytic enzymes are clustered in three adjacent operons. In Xcc306, these consecutive operons contain genes encoding the glycoside hydrolase family 10 (GH10) endoxylanases Xyn10A and Xyn10C, the agu67 gene, encoding a GH67 α-glucuronidase (Agu67), the xyn43E gene, encoding a putative GH43 α-l-arabinofuranosidase, and the xyn43F gene, encoding a putative β-xylosidase. Recombinant Xyn10A and Xyn10C convert polymeric 4-O-methylglucuronoxylan (MeGXn) to oligoxylosides methylglucuronoxylotriose (MeGX3), xylotriose (X3), and xylobiose (X2). Xcc306 completely utilizes MeGXn predigested with Xyn10A or Xyn10C but shows little utilization of MeGXn. Xcc306 with a deletion in the gene encoding α-glucuronidase (Xcc306 Δagu67) will not utilize MeGX3 for growth, demonstrating the role of Agu67 in the complete utilization of GH10-digested MeGXn. Preferential growth on oligoxylosides compared to growth on polymeric MeGXn indicates that GH10 xylanases, either secreted by Xcc306 in planta or produced by the plant host, generate oligoxylosides that are processed by Xyn10 xylanases and Agu67 residing in the periplasm. Coordinate induction by oligoxylosides of xyn10, agu67, cirA, the tonB receptor, and other genes within these three operons indicates that they constitute a regulon that is responsive to the oligoxylosides generated by the action of Xcc306 GH10 xylanases on MeGXn. The combined expression of genes in this regulon may allow scavenging of oligoxylosides derived from cell wall deconstruction, thereby contributing to the tissue colonization and/or survival of Xcc306 and, ultimately, to plant disease.  相似文献   

20.
Xanthomonas citri ssp. citri (Xcc) is the causal agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. A biofilm‐deficient mutant was identified in a screening of a transposon mutagenesis library of the Xcc 306 strain constructed using the commercial Tn5 transposon EZ‐Tn5 <KAN‐2> Tnp Transposome (Epicentre). Sequence analysis of a mutant obtained in the screening revealed that a single copy of the EZ‐Tn5 was inserted at position 446 of hrpM, a gene encoding a putative enzyme involved in glucan synthesis. We demonstrate for the first time that the product encoded by the hrpM gene is involved in β‐1,2‐glucan synthesis in Xcc. A mutation in hrpM resulted in no disease symptoms after 4 weeks of inoculation in lemon and grapefruit plants. The mutant also showed reduced ability to swim in soft agar and decreased resistance to H 2 O 2 in comparison with the wild‐type strain. All defective phenotypes were restored to wild‐type levels by complementation with the plasmid pBBR1‐MCS containing an intact copy of the hrpM gene and its promoter. These results indicate that the hrpM gene contributes to Xcc growth and adaptation in its host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号