首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specialized castes are considered a key reason for the evolutionary and ecological success of the social insect lifestyle. The most essential caste distinction is between the fertile queen and the sterile workers. Honeybee (Apis mellifera) workers and queens are not genetically distinct, rather these different phenotypes are the result of epigenetically regulated divergent developmental pathways. This is an important phenomenon in understanding the evolution of social insect societies. Here, we studied the genomic regulation of the worker and queen developmental pathways, and the robustness of the pathways by transplanting eggs or young larvae to queen cells. Queens could be successfully reared from worker larvae transplanted up to 3 days age, but queens reared from older worker larvae had decreased queen body size and weight compared with queens from transplanted eggs. Gene expression analysis showed that queens raised from worker larvae differed from queens raised from eggs in the expression of genes involved in the immune system, caste differentiation, body development and longevity. DNA methylation levels were also higher in 3‐day‐old queen larvae raised from worker larvae compared with that raised from transplanted eggs identifying a possible mechanism stabilizing the two developmental paths. We propose that environmental (nutrition and space) changes induced by the commercial rearing practice result in a suboptimal queen phenotype via epigenetic processes, which may potentially contribute to the evolution of queen–worker dimorphism. This also has potentially contributed to the global increase in honeybee colony failure rates.  相似文献   

2.
黄少康  陈盛禄 《昆虫知识》2002,39(3):176-181
蜜蜂ApismekiferaL .是典型的社会性昆虫 ,蜂王和工蜂都是由受精卵发育而来的二倍体成蜂 ,但是在形态、生理、行为等方面有明显的差异 ,属于不同的级型。蜂王和工蜂的级型分化的关键时期发生在幼虫的 4龄末至 5龄止。分化是由分化基因调控的 ,幼虫期食物的质和量是分化的外部决定因子。JH对两级型中卵巢的分化有非常重要的调控作用。蜜蜂脑或其它组织中可能有分泌调控CA的咽侧体调节激素 ,它们通过对CA中JH的合成和分泌的调控而参与了分化的调控。章鱼胺等生物胺也参与了分化调控过程。  相似文献   

3.
4.
5.
Honeybees (Apis mellifera L.) possess individuals (castes) in their colonies, to which specific tasks are allocated. Owing to a difference in nutrition, the young female larvae develop into either a fertile queen or a sterile worker. Despite a series of investigations on the underlying mechanisms of honeybee caste polyphenism, information on proteins and enzymes involved in DNA and RNA regulation in the nucleus is still missing. The techniques of nuclear protein enrichment, two-dimensional electrophoresis, mass spectrometry and bioinformatics were applied to understand the nuclear proteome changes in response to changes in environmental settings (nutrition and time) during the early developmental stages at the third (72 h), fourth (96 h), and fifth (120 h) instars of the two caste intended larvae. A total of 120 differentially expressed nuclear proteins were identified in both caste intended larvae during these developmental stages. The third, fourth and fifth instars of queen prospective larvae expressed 69%, 84%, and 68% of the proteins that had altered expression, respectively. Particularly, the prospective queen larvae up-regulated most of the proteins with nuclear functions. In general, this changing nuclear proteome of the two caste intended larvae over the three developmental stages suggests variations in DNA and RNA regulating proteins and enzymes. These variations of proteins and enzymes involved in DNA and RNA regulation in response to differential nutrition between the two caste intended larvae lead the two caste larvae to pursue different developmental trajectories. Hence, this first data set of the nuclear proteome helps us to explore the innermost biological makings of queen and worker bee castes as early as before the 72 h (3rd instar). Also, it provides new insights into the honeybee's polymorphism at nuclear proteome level and paves new ways to understand mechanisms of caste decision in other eusocial insects.  相似文献   

6.
We identified three candidate proteins/genes involved in caste and/or sex-specific olfactory processing in the honeybee Apis mellifera L., that are differentially expressed between the antennae of the worker, queen, and drone honeybees using SDS-polyacrylamide gel electrophoresis or the differential display method. A protein was identified, termed D-AP1, that was expressed preferentially in drone antennae when compared to those of workers. cDNA cloning revealed that D-AP1 is homologous to carboxylesterases. Enzymatic carboxylesterase activity in the drone antennae was higher than in the workers, suggesting its dominant function in the drone antennae. In contrast, two proteins encoded by genes termed W-AP1 and Amwat were expressed preferentially in worker antennae when compared to those of queens. W-AP1 is homologous to insect chemosensory protein, and Amwat encodes a novel secretory protein. W-AP1 is expressed selectively in worker antennae, while Amwat is expressed both in the antennae and legs of the workers. These findings suggest that these proteins are involved in the antennal function characteristic to drone or worker honeybees.  相似文献   

7.
Mounting evidence implicates ecdysteroids in queen-worker differentiation during the last larval instars of highly social insects. In the present study, we analyzed ecdysteroid titers in queen and worker larvae of the bumblebee Bombus terrestris from the second to the early fourth instar. B. terrestris is of particular interest because caste is already determined in the second instar, presumably by a pheromonal signal emitted by the egg-laying queen. Caste differences in the adults, however, are only expressed at the physiological and not at the morphological level, except for the distinctly larger size of the queen. In the second and third instar, ecdysteroid titers in queen larvae were generally higher than those of workers. These early caste-specific differences, however, were abolished in the fourth instar. In the early fourth instar we could detect two small ecdysteroid peaks, with the one preceding the cocoon-spinning phase presenting the characteristics of a pupal commitment peak. The synchrony of caste differences in ecdysteroid and juvenile hormone titers suggests a synergistic action of these hormones in caste determination.  相似文献   

8.
Synthetic juvenile hormone (methyl trans,trans,cis-10-epoxy-7-ethyl-3,11-dimethyl-2,6-tridecadienoate, 1 μg/μl acetone per animal) (JH) was topically applied to 2- to 3-day-old worker honeybee larvae in the hive. Eighty per cent of the hormone-treated larvae were removed from their brood cell before pupation. Only 1 out of 42 adults showed characteristics of an intercaste. Fifty per cent of the control larvae (1 μl acetone) developed to adults, all of which were workers.After topical application of JH and feeding on royal jelly under in vitro conditions, the rate of survival is high (up to 85 per cent adults), but up to 67 per cent of queens and 44 per cent of workers exhibit eye malformations with characteristics of somatic mutation. Formation of a more solid web by the spinning larvae, shortening of the diapause by 1 to 2 days, and unusual shapes of mandibles, legs, and abdomen are a consequence of hormone treatment. The effects are less marked after application of 0·1 instead of 1 μg hormone or after its addition to the food (2 μg/g royal jelly). Treatment of the 2- to 3-day-old worker larvae and subsequent rearing on royal jelly is followed by a shift in caste differentiation from queens and workers to intercastes. In no case, are more queens developed after juvenile hormone treatment.Queen bee determinator, partially purified from royal jelly, induces a concentration-dependent shift from workers to queen differentiation. A threefold increase in the natural determinator concentration of royal jelly results in an almost exclusive (98 per cent) queen formation from 2- to 3-day-old worker larvae. In contrast to this direct effect, the influence of JH is explained as an indirect morphogenetic effect not directly coupled with honeybee caste differentiation.  相似文献   

9.
中华蜜蜂DNA甲基化转移酶Dnmt3基因克隆及表达谱分析   总被引:1,自引:0,他引:1  
为探究中华蜜蜂Apis cerana cerana的DNA甲基化模式, 本研究采用RT PCR技术克隆了中华蜜蜂DNA甲基化转移酶3(Dnmt3)基因(GenBank登录号为JQ740768); 采用荧光定量PCR检测不同发育时期工蜂(4日龄蛹, 1, 7和30日龄成年蜂及产卵工蜂)和蜂王(4日龄蛹, 1日龄蜂王和产卵蜂王)头部的Dnmt3基因mRNA的表达量。结果表明: 该基因cDNA序列全长2 277 bp, 编码758个氨基酸残基, 预测的蛋白分子量为88.24 kD, 等电点为7.85。将中华蜜蜂与其他物种的Dnmt3基因的结构域进行比对, 同时将该基因推导的氨基酸序列与其他物种的Dnmt3氨基酸序列进行同源性比对和系统发育分析, 发现与西方蜜蜂的Dnmt3序列一致性高达99%。该基因在工蜂和蜂王不同发育时期均有表达, 1日龄工蜂与7日龄工蜂中没有显著差异(P>0.05), 30日龄工蜂中的表达量显著高于前两者 (P<0.05); 蜂王蛹中的表达量显著高于工蜂蛹 (P<0.05); 1日龄的蜂王中的表达量显著高于1日龄的工蜂(P<0.05); 产卵工蜂与产卵蜂王中的表达量没有差异(P>0.05)。这种表达情况提示其可能与工蜂劳动分工及蜜蜂卵巢发育有关。  相似文献   

10.
Polyandry in honeybee queens (Apis) causes many patrilines (subfamilies) within a colony, which may lead to a potential conflict of interest among workers. This may be most apparent during queen rearing when nepotistic worker behavior could influence the genetics of future generations. Several studies have searched for such conflict in European honeybees (A. mellifera), but studies on other Apis species remain lacking. We investigated the presence of reproductive conflict in A. cerana japonica by comparing the patriline proportion of queen larvae to that of adult workers. We determined the patrilines of 272 workers and 57 queen larvae using four polymorphic microsatellite markers that were sampled from queenless colonies originally derived from four naturally mated queen-right colonies. The number of patrilines in each colony was 9, 12, 8, and 7, respectively, which is lower than that observed in continental Asia. We found no difference in patriline proportion between adult workers and queen larvae. Our data support neither genetic variance for royalty or existence of worker nepotism in A. cerana japonica.  相似文献   

11.
12.
Expression profiles during honeybee caste determination   总被引:1,自引:0,他引:1  
Evans JD  Wheeler DE 《Genome biology》2001,2(1):research0001.1-research00016

Background

Depending on their larval environment, female honeybees develop into either queens or workers. As in other polyphenisms, this developmental switch depends not on genomic differences between queens and workers but on the differential expression of entire suites of genes involved with larval fate. As such, this and other polyphenic systems can provide a novel tool for understanding how genomes and environmental conditions interact to produce different developmental trajectories. Here we use gene-expression profiles during honeybee caste determination to present the first genomic view of polyphenic development.

Results

Larvae raised as queens or workers differed greatly in their gene-expression patterns. Workers remained more faithful than queens to the expression profiles of younger, bipotential, larvae. Queens appeared to both downregulate many of the genes expressed by bipotential larvae and turn on a distinct set of caste-related genes. Queens overexpressed several metabolic enzymes, workers showed increased expression of a member of the cytochrome P450 family, hexameric storage proteins and dihydrodiol dehydrogenase, and young larvae overexpressed two putative heat-shock proteins (70 and 90 kDa), and several proteins related to RNA processing and translation.

Conclusions

Large differences in gene expression between queens and workers indicate that social insect castes have faced strong directional selection pressures. Overexpression of metabolic enzymes by queen-destined larvae appears to reflect the enhanced growth rate of queens during late larval development. Many of the differently expressed genes we identified have been tied to metabolic rates and cellular responses to hormones, a result consistent with known physiological differences between queen and worker larvae.  相似文献   

13.
Social parasitism is widespread in the eusocial insects. Although social parasites often show a reduced worker caste, unmated workers can also parasitize colonies. Cape honeybee workers, Apis mellifera capensis, can establish themselves as social parasites in host colonies of other honeybee subspecies. However, it is unknown whether social parasitism by laying workers also occurs among Cape honeybee colonies. In order to address this question we genotyped worker offspring of six queenless A. m. capensis colonies and determined the maternity of the reproducing workers. We found that three non-nestmate workers dominated reproduction in a host colony and produced 62.5% of the progeny. Our results show that social parasitism by laying workers is a naturally occurring part of the biology of Cape honeybees. However, such social parasitism is not frequently found (6.41% of the total worker offspring) probably due to co-evolutionary processes among A. m. capensis resulting in an equilibrium between selection for reproductive dominance in workers, colony maintenance and queen adaptation. Received 28 July 2005; revised 19 September and 11 November 2005; accepted 16 November 2005.  相似文献   

14.
LncRNA在蜜蜂级型分化中的功能研究   总被引:1,自引:0,他引:1  
蜜蜂的级型分化被证实是由蜂王浆中的Royalactin决定,工蜂和蜂王幼虫在级型分化时编码基因的表达差异也被广泛研究.我们发现,在蜜蜂幼虫的级型分化过程中,lncRNA也有着显著的表达差异,因此认为,lncRNA也参与了蜜蜂的级型分化过程.进一步的分析显示,lncRNA可能通过影响上下游基因的转录和功能执行的方式,在蜜蜂早期发育的多细胞组织发育、神经系统发育和转录调控的过程中起到重要的调控作用.  相似文献   

15.
16.
The critical period for caste determination and its juvenile hormone (JH III) correlates were studied in Bombus terrestris. Larvae of known age and instar were taken from young colonies, in which they would have been reared as workers, and placed into groups of queenless workers. Under these conditions the critical age for caste determination was 5 days, during the second instar. Endocrine correlates of caste determination were obtained by determining profiles of juvenile hormone titer and juvenile hormone biosynthesis, measured by chiral-specific radioimmunoassay and the in vitro radiochemical assay, respectively. By the middle of the second instar prospective queen larvae had significantly higher rates of juvenile hormone biosynthesis and juvenile hormone titer than prospective worker larvae. Based on the coincidence of timing of both the critical period and the appearance of caste-specific juvenile hormone titer, we suggest that juvenile hormone plays a role in the mechanisms that control caste determination in B. terrestris.  相似文献   

17.
18.
In honeybee colonies, reproduction is monopolized by the queen while her daughter workers are facultatively sterile. Caste determination is a consequence of environmental conditions during development, during which female larvae may become either queens or workers depending on their larval diet. This bipotency introduces significant variation in the reproductive potential of queen bees, with queens raised from young worker larvae exhibiting high reproductive potential and queens raised from older worker larvae exhibiting lower reproductive potential. We verify that low-quality queens are indeed produced from older worker larvae, as measured morphometrically (e.g., body size) and by stored sperm counts. We also show, for the first time, that low-quality queens mate with significantly fewer males, which significantly influences the resultant intracolony genetic diversity of the worker force of their future colonies. These results demonstrate a reproductive continuum of honeybee queens and provide insights into the reproductive constraints of social insects.  相似文献   

19.
移虫育王是大量培育蜜蜂蜂王的有效手段。近年来,大量研究表明人工移虫育王会对蜂王的发育和质量造成不良影响,并且改变其表观遗传修饰和基因表达。然而,移虫育王是否会改变蜂王体内的miRNA表达尚不清楚。本试验以西方蜜蜂Apis mellifera为研究对象,通过miRNA测序比较移虫育王(2日龄幼虫)与对照组移卵育王所培育蜂王的miRNA表达情况。结果表明:移虫育王与移卵育王培育的2种蜂王存在7个差异表达的miRNA,而这7个差异的miRNA可注释到651个靶基因。GO功能分析结果显示,这些靶基因主要富集在基因转录调控、转录因子活性、DNA结合、细胞核调控类型等方面;KEGG信号通路分析结果显示,靶基因主要富集在Wnt、Hippo信号通路和糖类代谢等方面。因此,本研究结果表明移虫育王可改变蜂王体内的miRNA表达,并可能通过调控Wnt、Hippo和糖代谢等信号通路上的靶基因来影响蜂王发育和质量。  相似文献   

20.
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNASeq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号