首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major 40 S ribosomal protein S6 phosphatase in Swiss mouse 3T3 fibroblasts is a type 1 enzyme (Olivier, A. R., Ballou, L. M., and Thomas, G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 4720-4724). Polyclonal antibodies were raised against a synthetic peptide containing the carboxyl-terminal 14 amino acids of the catalytic subunit of phosphatase 1 (PP-1C). Results from Western blot analysis and immunoprecipitation show that the peptide antiserum specifically recognizes PP-1C in cell extracts. Anion-exchange chromatography of cell extracts and Western blot analysis revealed three peaks of PP-1C termed A, B, and C. Peaks A and C are associated with the major type 1 S6 phosphatase activities, but peak B exhibits little activity. The phosphatase in peak A (Mr 39,000) appears to represent the free catalytic subunit, whereas the enzymes in peaks B and C display sizes of 68,000-140,000. Peak B contains two additional proteins of Mr 26,000 and 48,000 that co-immunoprecipitate with PP-1C, while peak C has a single additional protein of Mr 100,000. Fifteen min after serum withdrawal there is a 2-fold stimulation of S6 phosphatase activity in peak A that can be accounted for by an increase in the amount of PP-1C. The amount of PP-1C in the inactive peak B fraction also increases during this time and this increase is associated with changes in the phosphorylation state of the Mr 26,000 and 48,000 proteins. The results are discussed in relation to regulatory mechanisms which are thought to modulate the activity of type 1 phosphatase.  相似文献   

2.
3.
4.
The neuronal tissue-specific protein kinase C (PKC) substrate B-50 can be dephosphorylated by endogenous protein phosphatases (PPs) in synaptic plasma membranes (SPMs). The present study characterizes membrane-associated B-50 phosphatase activity by using okadaic acid (OA) and purified 32P-labeled substrates. At a low concentration of [gamma-32P]ATP, PKC-mediated [32P]phosphate incorporation into B-50 in SPMs reached a maximal value at 30 s, followed by dephosphorylation. OA, added 30 s after the initiation of phosphorylation, partially prevented the dephosphorylation of B-50 at 2 nM, a dose that inhibits PP-2A. At the higher concentration of 1 microM, a dose of OA that inhibits PP-1 as well as PP-2A, a nearly complete blockade of B-50 dephosphorylation was seen. Heat-stable PP inhibitor-2 (I-2) also inhibited dephosphorylation of B-50. The effects of OA and I-2 on B-50 phosphatase activity were additive. Endogenous PP-1- and PP-2A-like activities in SPMs were also demonstrated by their capabilities of dephosphorylating [32P]phosphorylase a and [32P]casein. With these exogenous substrates, sensitivities of the membrane-bound phosphatases to OA and I-2 were found to be similar to those of purified forms of these enzymes. These results indicate that PP-1- and PP-2A-like enzymes are the major B-50 phosphatases in SPMs.  相似文献   

5.
The protein B-50 is dephosphorylated in rat cortical synaptic plasma membranes (SPM) by protein phosphatase type 1 and 2A (PP-1 and PP-2A)-like activities. The present studies further demonstrate that B-50 is dephosphorylated not only by a spontaneously active PP-1-like enzyme, but also by a latent form after pretreatment of SPM with 0.2 mM cobalt/20 micrograms of trypsin/ml. The activity revealed by cobalt/trypsin was inhibited by inhibitor-2 and by high concentrations (microM) of okadaic acid, identifying it as a latent form of PP-1. In the presence of inhibitor-2 to block PP-1, histone H1 (16-64 micrograms/ml) and spermine (2 mM) increased B-50 dephosphorylation. This sensitivity to polycations and the reversal of their effects on B-50 dephosphorylation by 2 nM okadaic acid are indicative of PP-2A-like activity. PP-1- and PP-2A-like activities from SPM were further displayed by using exogenous phosphorylase alpha and histone H1 as substrates. Both PP-1 and PP-2A in rat SPM were immunologically identified with monospecific antibodies against the C-termini of catalytic subunits of rabbit skeletal muscle PP-1 and PP-2A. Okadaic acid-induced alteration of B-50 phosphorylation, consistent with inhibition of protein phosphatase activity, was demonstrated in rat cortical synaptosomes after immunoprecipitation with affinity-purified anti-B-50 immunoglobulin G. These results provide further evidence that SPM-bound PP-1 and PP-2A-like enzymes that share considerable similarities with their cytosolic counterparts may act as physiologically important phosphatases for B-50.  相似文献   

6.
The glycogen-associated form of protein phosphatase-1 (PP-1G) comprises a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit. In the preceding paper in this issue of the journal we showed that the C subunit is released from PP-1G in response to phosphorylation of the G subunit by cAMP-dependent protein kinase. We now show that at 0.15-0.2 M KCl the phosphorylase phosphatase activity of glycogen-bound PP-1G is 5-8 times higher than that of released C subunit or unbound PP-1G, which are strongly inhibited at these ionic strengths. The activity of glycogen-bound PP-1G towards glycogen synthase was about 5-fold higher than that of released C subunit at 0.15M KCl. Studies with glycogen-bound substrates and myosin P-light chain (which does not interact with glycogen) indicated that PP-1G activity is only enhanced compared to free C subunit at near physiological ionic strength and when both PP-1G and substrate are glycogen-associated. The inhibition by increasing ionic strength and enhanced activity upon binding to glycogen reflected changes in K'm, but not Vmax. From the determined specificity constant, k'cat/K'm approximately 4 x 10(6) s-1 M-1, it was calculated that at physiological levels of glycogen-bound PP-1G (200 nM) and phosphorylase (70 microM), dephosphorylation of the latter could occur with a half time of 15 s, sufficient to account for inactivation rates in vivo. The much higher catalytic efficiency of glycogen-bound PP-1G toward the glycogen-metabolising enzymes at physiological ionic strength compared to free C subunit substantiates the role of PP-1G in the regulation of these substrates, and establishes a novel mechanism for selectively regulating their phosphorylation states in response to adrenalin and other factors affecting phosphorylation of the G subunit.  相似文献   

7.
The myosin-bound form of protein phosphatase 1 (PP-1M) and the glycogen-bound form (PP-1G) together account for virtually all the phosphatase activity in rabbit skeletal muscle extracts towards native myosin. PP-1M has a 3-fold higher activity towards native myosin than does PP-1G and accounts for at least 60% of the myosin phosphatase activity in rabbit skeletal muscle. PP-1M accounts for 90% of the myosin phosphatase activity in bovine cardiac muscle, where PP-1G is essentially absent. The high activity of PP-1M towards native myosin appears to arise from interaction of the catalytic subunit with the putative myosin-binding subunit, since chymotryptic digestion liberates a catalytic subunit having the same characteristics as that released by limited proteolysis of PP-1G. Protein phosphatase 2A in skeletal and cardiac muscles is very active towards the isolated myosin P-light chain, but ineffective in dephosphorylating native myosin. The results suggest that PP-1M is the enzyme that dephosphorylates myosin in skeletal and cardiac muscle.  相似文献   

8.
G R Alms  P Sanz  M Carlson    T A Haystead 《The EMBO journal》1999,18(15):4157-4168
Protein phosphatase 1 (Glc7p) and its binding protein Reg1p are essential for the regulation of glucose repression pathways in Saccharomyces cerevisiae. In order to identify physiological substrates for the Glc7p-Reg1p complex, we examined the effects of deletion of the REG1 gene on the yeast phosphoproteome. Analysis by two-dimensional phosphoprotein mapping identified two distinct proteins that were greatly increased in phosphate content in reg1Delta mutants. Mixed peptide sequencing identified these proteins as hexokinase II (Hxk2p) and the E1alpha subunit of pyruvate dehydrogenase. Consistent with increased phosphorylation of Hxk2p in response to REG1 deletion, fractionation of yeast extracts by anion-exchange chromatography identified Hxk2p phosphatase activity in wild-type strains that was selectively lost in the reg1Delta mutant. The phosphorylation state of Hxk2p and Hxk2p phosphatase activity was restored to wild-type levels in the reg1Delta mutant by expression of a LexA-Reg1p fusion protein. In contrast, expression of LexA-Reg1p containing mutations at phenylalanine in the putative PP-1C-binding site motif (K/R)(X)(I/V)XF was unable to rescue Hxk2p dephosphorylation in intact yeast or restore Hxk2p phosphatase activity. These results demonstrate that Reg1p targets PP-1C to dephosphorylate Hxk2p in vivo and that the motif (K/R)(X) (I/V)XF is necessary for its PP-1 targeting function.  相似文献   

9.
Functional expression of recombinant wild-type phosphatase 2A catalytic subunit has been unsuccessful in the past. A nine-amino-acid peptide sequence (YP-YDVPDYA) derived from the influenza hemagglutinin protein was used to modify the NH2 and/or COOH terminus of the phosphatase 2A catalytic subunit. Addition of the nine-amino-acid sequence at the NH2 terminus allowed recombinant phosphatase 2A expression as a predominantly cytosolic phosphatase 2A enzyme. The 12CA5 monoclonal antibody that recognizes the nine-amino-acid hemagglutinin peptide sequence was used to immunoprecipitate the epitope-tagged phosphatase 2A catalytic subunit. Assay of the immunoprecipitated epitope-tagged phosphatase 2A demonstrated an okadaic acid-sensitive dephosphorylation of [32P] histone H1 and [32P]myelin basic protein similar to that measured with the wild-type enzyme. Functional phosphatase activity could be demonstrated for the NH2-terminal modified phosphatase 2A catalytic subunit following transient expression in COS cells or stable expression in Rat1a cells. In contrast, the COOH-terminal-modified phosphatase 2A catalytic subunit was very poorly expressed. The NH2-, COOH-modified subunit, having the nine-amino-acid hemagglutinin peptide sequence encoded at both termini of the polypeptide, was also expressed as a functional phosphatase 2A enzyme. Thus, NH2-terminal modification of the phosphatase 2A catalytic subunit results in a functional plasmid-expressed enzyme. The unique nine-amino-acid epitope-tag sequence also provides a method to easily resolve the recombinant phosphatase 2A from the endogenous wild-type gene product and related phosphatases expressed in cells.  相似文献   

10.
The C terminus of the catalytic gamma subunit of phosphorylase kinase contains two autoinhibitory calmodulin binding domains designated PhK13 and PhK5. These peptides inhibit truncated gamma(1-300). Previous data show that PhK13 (residues 302-326) is a competitive inhibitor with respect to phosphorylase b, with a K(i) of 1.8 microm. This result suggests that PhK13 may bind to the active site of truncated gamma(1-300). Variants of PhK13 were prepared to localize the determinants for interaction with the catalytic fragment gamma(1-300). PhK13-1, containing residues 302-312, was found to be a competitive inhibitor with respect to phosphorylase b with a K(i) of 6.0 microm. PhK13 has been proposed to function as a pseudosubstrate inhibitor with Cys-308 occupying the site that normally accommodates the phosphorylatable serine in phosphorylase b. A PhK13-1 variant, C308S, was synthesized. Kinetic characterization of this peptide reveals that it does not serve as a substrate but is a competitive inhibitor. Additional variants were designed based on previous knowledge of phosphorylase kinase substrate determinants. Variants were analyzed as substrates and as inhibitors for truncated gamma(1-300). Although PhK13-1 does not appear to function as a pseudosubstrate, several specificity determinants employed in the recognition of phosphorylase b as substrate are utilized in the recognition of PhK13-1 as an inhibitor.  相似文献   

11.
The catalytic cores of PP-1c and PP-2B (calcineurin) are structurally conserved. However, PP-2B is resistant to inhibition by toxins of the okadaic acid and cyclic peptide classes, while PP-1c is potently inhibited. Molecular docking of the structure of microcystin-LR onto the catalytic core of PP-2B identified residues that may be responsible for blocking access of toxins to the catalytic site. Amino acids in PP-1c were substituted with these PP-2B residues to investigate their contribution to PP-2B toxin resistance. Mutants of PP-1c were also produced to test the importance of hydrophobic interactions to toxin binding. Our results suggest that different classes of toxin inhibitors interact with the same hydrophobic side chains of PP-1c through different mechanisms. Substitution of amino acids in PP-1c with PP-2B residues demonstrated no highly significant changes in toxin inhibition. We hypothesize that an interaction outside the catalytic core causing the L7 loop of PP-2B to block the catalytic site may be responsible for PP-2B resistance to toxins.  相似文献   

12.
Nuclei from bovine thymus contain a high level of partially latent protein phosphatase 1 (PP-1). More than 90% of this PP-1 is associated with the insoluble chromatin/matrix fraction and can be extracted with 0.3 M NaCl. The salt extract also contains three heat- and acid-stable inhibitory proteins of PP-1 that can be resolved on Mono Q. We have purified two of these nuclear inhibitors of PP-1 (NIPP-1a and NIPP-1b) until homogeneity. They are acidic proteins (pI = 4.4) with a molecular mass of 18 kDa (NIPP-1a) and 16 kDa (NIPP-1b) on SDS-PAGE. Judged from the larger molecular mass that was deduced from gel filtration (35 kDa), NIPP-1a and NIPP-1b appear to be asymmetric or dimeric proteins. The nuclear inhibitors totally inhibited the phosphorylase phosphatase activity of PP-1, but even at a 250-fold higher concentration they did not affect the activities of the other major serine/threonine protein phosphatases (PP-2A, PP-2B, and PP-2C). NIPP-1a and NIPP-1b inhibited the catalytic subunit of PP-1 with an extrapolated Ki of about 1 pM, which is some three orders of magnitude better than the cytoplasmic proteins inhibitor 1/DARPP-32 and modulator. The nuclear inhibitors were not inactivated by incubation with protein phosphatases that inactivate inhibitor 1 and DARPP-32. Unlike modulator, they were not able to convert the catalytic subunit of PP-1 into a MgATP-dependent form. Remarkably, the extent of inhibition of PP-1 by NIPP-1b depended on the nature of the substrate. The phosphorylase phosphatase and casein phosphatase activities of PP-1 were completely blocked by NIPP-1b, whereas the dephosphorylation of basic proteins was either not at all inhibited (histone IIA) or only partially (myelin basic protein). These data may indicate that the acidic NIPP-1b is inactivated through complexation by basic proteins. Indeed, nonphosphorylated histone IIA antagonized the inhibitory effect of NIPP-1b on the casein phosphatase activity of PP-1. Our data show that the nucleus contains specific and potent inhibitory proteins of PP-1 that differ from earlier described cytoplasmic inhibitors. We suggest that these novel proteins may control the activity of nuclear PP-1 on its natural substrate(s).  相似文献   

13.
Protein phosphatase 1I (PP-1I) is a major endogenous form of protein phosphatase 1 (PP-1) that consists of the core catalytic subunit PP-1c and the regulatory subunit inhibitor 2 (I-2). Phosphorylation of the Thr-72 residue of I-2 is required for activation of PP-1I. We studied the effects of two protein kinases identified previously in purified brain PP-1I by mass spectrometry, Cdc25C-associated kinase 1 (C-TAK1) and PFTAIRE (PFTK1) kinase, for their ability to regulate PP-1I. Purified C-TAK1 phosphorylated I-2 in reconstituted PP-1I (PP-1c·I-2) on Ser-71, which resulted in partial inhibition of its ATP-dependent phosphatase activity and inhibited subsequent phosphorylation of Thr-72 by the exogenous activating kinase GSK-3. In contrast, purified PFTK1 phosphorylated I-2 at Ser-86, a site known to potentiate Thr-72 phosphorylation and activation of PP-1I phosphatase activity by GSK-3. These findings indicate that brain PP-1I associates with and is regulated by the associated protein kinases C-TAK1 and PFTK1. Multisite phosphorylation of the I-2 regulatory subunit of PP-1I leads to activation or inactivation of PP-1I through bidirectional modulation of Thr-72 phosphorylation, the critical activating residue of I-2.  相似文献   

14.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

15.
The glycogen-bound form of protein phosphatase-1 (PP-1G) was previously purified as a heterodimer composed of a 37-kDa catalytic (C) subunit and a proteolytically sensitive 103-kDa glycogen-binding (G) subunit [Str?hlfors, P., Hiraga, A. & Cohen, P. (1985) Eur. J. Biochem. 149, 295-303]. In this paper we demonstrate by a variety of criteria that the intact G subunit is a 161-kDa protein, and that the 103-kDa species (now termed G') is itself a product of proteolysis. A second phosphorylation site for cAMP-dependent protein kinase (termed site 2) was identified on the G subunit. The site 2 serine was phosphorylated at a comparable rate to site 1, and near stoichiometric phosphorylation could be achieved in the presence and absence of glycogen. Site 2 was dephosphorylated by PP-1 at a slow rate, whereas site 1 was resistant to autodephosphorylation. PP-1G, as well as the proteolytic activity responsible for degradation of the G subunit, remained tightly associated with glycogen-protein particles during washing with a variety of solvents. The PP-1G holoenzyme was released from glycogen-protein particles by dilution, with a dissociation half point corresponding to about 10 nM PP-1G. Binding experiments with purified PP-1G and glycogen indicated a bimolecular process with Kapp values corresponding to about 8 nM glycogen and 4 nM PP-1G. Binding was not significantly affected by increasing ionic strength to 0.5 M or variation of pH from 6 to 8. The results are consistent with a high-affinity glycogen-binding domain on the G subunit, and indicate that a physiological concentrations of phosphatase and glycogen, PP-1G should be almost entirely bound to glycogen.  相似文献   

16.
A procedure is described for measuring Escherichia coli signal peptidase I activity which exploits an intact precursor protein composed of the alkaline phosphatase signal peptide fused to the full length mammalian cytochrome b5. This cytochrome b5 precursor protein has been extensively characterised and shown to be processed accurately by purified signal peptidase I [Protein Expr. Purif. 7 (1996) 237]. The amphipathic, chimaeric cytochrome b5 precursor was isolated in mg quantities in a highly homogeneous state under non-denaturing conditions. The processing of the cytochrome b5 precursor by signal peptidase displayed Michaelis-Menten kinetics with K(m)=50 microM and k(cat)=11 s(-1). The K(m) was 20-fold lower than that obtained with signal peptide substrates and 3-fold higher than that reported for pro-OmpA-nuclease A precursor fusion. The corresponding turnover number, k(cat), was four orders of magnitude greater than the peptide substrates but was 2-fold lower than pro-OmpA-nuclease A precursor fusion. These results confirm that both the affinities and the catalytic power of the signal peptidase are significantly higher for macromolecular precursor substrates than for the shorter signal peptide substrates.  相似文献   

17.
We have examined the roles of type-1 (PP-1) and type-2A (PP-2A) protein-serine/threonine phosphatases in the mechanism of activation of p34cdc2/cyclin B protein kinase in Xenopus egg extracts. p34cdc2/cyclin B is prematurely activated in the extracts by inhibition of PP-2A by okadaic acid but not by specific inhibition of PP-1 by inhibitor-2. Activation of the kinase can be blocked by addition of the purified catalytic subunit of PP-2A at a twofold excess over the activity in the extract. The catalytic subunit of PP-1 can also block kinase activation, but very high levels of activity are required. Activation of p34cdc2/cyclin B protein kinase requires dephosphorylation of p34cdc2 on Tyr15. This reaction is catalysed by cdc25-C phosphatase that is itself activated by phosphorylation. We show that, in interphase extracts, inhibition of PP-2A by okadaic acid completely blocks cdc25-C dephosphorylation, whereas inhibition of PP-1 by specific inhibitors has no effect. This indicates that a type-2A protein phosphatase negatively regulates p34cdc2/cyclin B protein kinase activation primarily by maintaining cdc25-C phosphatase in a dephosphorylated, low activity state. In extracts containing active p34cdc2/cyclin B protein kinase, dephosphorylation of cdc25-C is inhibited, whereas the activity of PP-2A (and PP-1) towards other substrates is unaffected. We propose that this specific inhibition of cdc25-C dephosphorylation is part of a positive feedback loop that also involves direct phosphorylation and activation of cdc25-C by p34cdc2/cyclin B. Dephosphorylation of cdc25-C is also inhibited when cyclin A-dependent protein kinase is active, and this may explain the potentiation of p34cdc2/cyclin B protein kinase activation by cyclin A. In extracts supplemented with nuclei, the block on p34cdc2/cyclin B activation by unreplicated DNA is abolished when PP-2A is inhibited or when stably phosphorylated cdc25-C is added, but not when PP-1 is specifically inhibited. This suggests that unreplicated DNA inhibits p34cdc2/cyclin B activation by maintaining cdc25-C in a low activity, dephosphorylated state, probably by keeping the activity of a type-2A protein phosphatase towards cdc25-C at a high level.  相似文献   

18.
We have recently demonstrated that a 37-amino acid peptide corresponding to the cytoplasmic domain of the natriuretic peptide receptor C (NPR-C) inhibited adenylyl cyclase activity via pertussis toxin (PT)-sensitive G(i) protein. In the present studies, we have used seven different peptide fragments of the cytoplasmic domain of the NPR-C receptor with complete, partial, or no G(i) activator sequence to examine their effects on adenylyl cyclase activity. The peptides used were KKYRITIERRNH (peptide 1), RRNHQEESNIGK (peptide 2), HRELREDSIRSH (peptide 3), RRNHQEESNIGKHRELR (peptide 4), QEESNIGK (peptide X), ITIERRNH (peptide Y), and ITIYKKRRNHRE (peptide Z). Peptides 1, 3, and 4 have complete G(i) activator sequences, whereas peptides 2 and Y have partial G(i) activator sequences with truncated carboxyl or amino terminus, respectively. Peptide X has no structural specificity, whereas peptide Z is the scrambled peptide control for peptide 1. Peptides 1, 3, and 4 inhibited adenylyl cyclase activity in a concentration-dependent manner with apparent K(i) between 0.1 and 1 nm; however, peptide 2 inhibited adenylyl cyclase activity with a higher K(i) of about 10 nm, and peptides X, Y, and Z were unable to inhibit adenylyl cyclase activity. The maximal inhibitions observed were between 30 and 40%. The inhibition of adenylyl cyclase activity by peptides 1-4 was absolutely dependent on the presence of guanine nucleotides and was completely attenuated by PT treatment. In addition, the stimulatory effects of isoproterenol, glucagon, and forskolin on adenylyl cyclase activity were inhibited to different degrees by these peptides. These results suggest that the small peptide fragments of the cytoplasmic domain of the NPR-C receptor containing 12 or 17 amino acids were sufficient to inhibit adenylyl cyclase activity through a PT-sensitive G(i) protein. The peptides having complete structural specificity of G(i) activator sequences at both amino and carboxyl termini were more potent to inhibit adenylyl cyclase activity as compared with the peptides having a truncated carboxyl terminus, whereas the truncation of the amino-terminal motif completely attenuates adenylyl cyclase inhibition.  相似文献   

19.
The synthetic peptide hGH 177–191, corresponding to the last 15 residues at the carboxyl terminus of human pituitary growth hormone, promotes the conversion of glycogen synthase α to glycogen synthase b in muscle. When injected, the peptide was found to produce inactivation of glycogen synthase phosphatase activity in rat skeletal muscle. The time course of phosphatase inactivation was closely correlated with that for glycogen synthase. The peptide had no effect either on muscle 3′,5′-cyclic AMP levels or on synthase kinase activity. These results can be explained in terms of a dynamic cycle of interconversion of synthase between active and inactive forms, by the simultaneous action of synthase kinases and synthase phosphatases. A decrease in the ratio of phosphatase to kinase activity would result in a decrease in the steady-state level of synthase α activity.  相似文献   

20.
Treatment of adipocytes with okadaic acid (a specific inhibitor of type 1 and 2a protein phosphatases) resulted in a rapid 8-10-fold stimulation of cell extract myelin basic protein (MBP) kinase activity (t1/2 = 10 min) and kinase activity toward a synthetic peptide RRLSSLRA (S6 peptide) (t1/2 = 5 min). Insulin brought about a smaller stimulation of these two activities (t1/2 = 2.5 min). MBP kinase activity from cells treated with okadaic acid or insulin was resolved by anion exchange chromatography into two well defined peaks; S6 peptide kinase activity was less well resolved. The two partially purified MBP kinases were inactivated by the protein tyrosine phosphatase CD45 or by protein phosphatase 2a (PP-2a). In contrast, partially purified S6 peptide kinase activity was inactivated only by PP-2a or protein phosphatase 1 (PP-1). Furthermore, a 38-kDa protein which co-eluted with one peak of MBP kinase and a 42-kDa protein which co-eluted with the other peak of MBP kinase were phosphorylated on tyrosine after treatment with okadaic acid. These findings illustrate several important points concerning regulation of MBP and S6 peptide kinases. First, these protein kinases are regulated by phosphorylation, and, second, in the absence of hormonal stimuli their activities are strongly suppressed by protein phosphatases. Lastly, the increased tyrosine phosphorylation accompanying the activation of MBP kinases following okadaic acid treatment suggests a role for PP-2a in events that are mediated by tyrosine phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号