首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Ribonucleoprotein (RNP) cores with RNA-synthesizing activity were prepared in two fractions, M protein-free and M protein-associated, from detergent-treated influenza virus PR8 by centrifugation through a discontinuous triple gradient of cesium sulfate, glycerol, and NP-40. The M-free RNP was fractionated by phosphocellulose column chromatography into two major RNP forms, A and B, which differed in the content of P proteins, while the M-associated RNP gave only the low P-content Form-B RNP. Starting from the high P-content Form-A RNP, an RNA-P proteins complex virtually free from NP protein was isolated by cesium sulfate equilibrium centrifugation. The complex, containing only three P proteins (P1, P2, and P3), was still active in catalyzing RNA synthesis in vitro without addition of exogenous template, indicating that NP protein is not required for the catalysis of RNA synthesis. RNA synthesis by the isolated RNA-P proteins complex was dependent on either ApG or capped RNA primers, and required four ribonucleoside triphosphates as substrates. The RNA product in this reaction was hybridizable to viral RNA. A complex of one each of the three P proteins was separated from RNA by glycerol gradient centrifugation after ribonuclease treatment or cesium chloride equilibrium centrifugation.  相似文献   

2.
The RNA-dependent RNA polymerase of influenza virus A/PR/8 was isolated from virus particles by stepwise centrifugation in cesium salts. First, RNP (viral RNA-NP-P proteins) complexes were isolated by glycerol gradient centrifugation of detergent-treated viruses and subsequently NP was dissociated from RNP by cesium chloride gradient centrifugation. The P-RNA (P proteins-viral RNA) complexes were further dissociated into P proteins and viral RNA by cesium trifluoroacetate (CsTFA) gradient centrifugation. The nature of P proteins was further analyzed by glycerol gradient centrifugation and immunoblotting using monospecific antibodies against each P protein. The three P proteins, PB1, PB2, and PA, sedimented altogether as fast as the marker protein with the molecular weight of about 250,000 Da. Upon addition of the template vRNA, the RNA-free P protein complex exhibited the activities of capped RNA cleavage and limited RNA synthesis. When a cell line stably expressing cDNAs for three P proteins and NP protein was examined, the three P proteins were found to be co-precipitated by antibodies against the individual P proteins. These results indicate that the influenza virus RNA-dependent RNA polymerase is a heterocomplex composed of one each of the three P proteins and that the RNA-free RNA polymerase can be isolated in an active form from virus particles. Furthermore, the three P proteins form a complex in the absence of vRNA.  相似文献   

3.
K Shimizu  H Handa  S Nakada    K Nagata 《Nucleic acids research》1994,22(23):5047-5053
An in vitro RNA synthesis system mimicking replication of genomic influenza virus RNA was developed with nuclear extracts prepared from influenza virus-infected HeLa cells using exogenously added RNA templates. The RNA synthesizing activity was divided into two complementing fractions, i.e. the ribonucleoprotein (RNP) complexes and the fraction free of RNP, which could be replaced with RNP cores isolated from virions and nuclear extracts from uninfected cells, respectively. When nuclear extracts from uninfected cells were fractionated by phosphocellulose column chromatography, the stimulatory activity for RNA synthesis was further separated into two distinct fractions. One of them, tentatively designated RAF (RNA polymerase activating factor), stimulated RNA synthesis with either RNP cores or RNA polymerase and nucleocapsid protein purified from RNP cores as the enzyme source. In contrast, the other, designated PRF (polymerase regulating factor), functioned as an activator only when RNP cores were used as the enzyme source. Biochemical analyses revealed that PRF facilitates dissociation of RNA polymerase from RNP cores. Of interest is that virus-coded non-structural protein 1 (NS1), which has been thought to be involved in regulation of replication, counteracted PRF function. Roles of cellular factors and viral proteins, NS1 in particular, are discussed in terms of regulation of influenza virus RNA genome replication.  相似文献   

4.
trans splicing in Trypanosoma brucei involves the ligation of the 40-nucleotide spliced leader (SL) to each of the exons of large, polycistronic pre-mRNAs and requires the function of small nuclear ribonucleoproteins (snRNPs). We have identified and characterized snRNP complexes of SL, U2, U4, and U6 RNAs in T. brucei extracts by a combination of glycerol gradient sedimentation, CsCl density centrifugation, and anti-m3G immunoprecipitation. Both the SL RNP and the U4/U6 snRNP contain salt-stable cores; the U2 snRNP, in contrast to other eucaryotic snRNPs, is not stable under stringent ionic conditions. Two distinct complexes of U6 RNA were found, a U6 snRNP and a U4/U6 snRNP. The structure of the SL RNP was analyzed in detail by oligonucleotide-directed RNase H protection and by in vitro reconstitution. Our results indicate that the 3' half of SL RNA constitutes the core protein-binding domain and that protein components of the SL RNP also bind to the U2 and U4 RNAs. Using antisense RNA affinity chromatography, we identified a set of low-molecular-mass proteins (14.8, 14, 12.5, and 10 kDa) as components of the core SL RNP.  相似文献   

5.
6.
7.
Ribonucleoproteins (RNPs) isolated from infectious and defective interfering (DI) influenza virus (WSN) contained three major RNP peaks when analyzed in a glycerol gradient. Peak I RNP was predominant in infectious virus but was greatly reduced in DI virus preparations. Conversely, peak III RNP was elevated in DI virus, suggesting a large increase in DI RNA in this fraction. Labeled [(32)P]RNA was isolated from each RNP region and analyzed by electrophoresis on polyacrylamide gels. Peak I RNP contained primarily the polymerase and some HA genes, peak II contained some HA gene but mostly the NP and NA genes, and peak III contained the M and NS genes. In addition, peak III RNP from DI virus also contained the characteristic DI RNA segments. Interference activity of RNP fractions isolated from infectious and DI virus was tested using infectious center reduction assay. RNP peaks (I, II, and III) from infectious virus did not show any interference activity, whereas the peak III DI RNP caused a reduction in the number of infectious centers as compared to controls. Similar interference was not demonstrable with peak I RNP of DI virus nor with any RNP fractions from infectious virus alone. The interference activity of RNP fractions was RNase sensitive, suggesting that the DI RNA contained in DI RNPs was the interfering agent, and dilution experiments supported the conclusion that a single DI RNP could cause interference. The interfering RNPs were heterogeneous, and the majority migrated slower than viral RNPs containing M and NS genes. These results suggest that DI RNP (or DI RNA) is also responsible for interference in segmented, negative-stranded viruses.  相似文献   

8.
9.
A soluble RNA-dependent RNA polymerase was isolated from poliovirus-infected HeLa cells and was shown to copy poliovirus RNA in vitro. The enzyme was purified from a 200,000-X-g supernatant of a cytoplasmic extract of infected cells. The activity of the enzyme was measured throughout the purification by using a polyadenylic acid template and oligouridylic acid primer. The enzyme was partially purified by ammonium sulfate precipitation, glycerol gradient centrifugation, and phosphocellulose chromatography. The polymerase precipitated in a 35% saturated solution of ammonium sulfate, sedimented at about 7S on a glycerol gradient, and eluted from phosphocellulose with 0.15 M KC1. The polymerase was purified about 40-fold and was shown to be totally dependent on exogenous RNA for activity and relatively free of contaminating nuclease. The partially purified polymerase was able to use purified polio virion RNA as well as a template. Under the reaction conditions used, the polymerase required an oligouridylic acid primer and all four ribonucleside triphosphates for activity. The optimum ratio of oligouridylic acid molecules to poliovirus RNA molecules for priming activity was about 16:1. A nearest-neighbor analysis of the in vitro RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA rendered it resistant to RNase digestion, thus suggesting that the product RNA was complementary to the virion RNA template.  相似文献   

10.
Reconstitution of influenza virus nucleoprotein (NP)-RNA complexes was performed with segment 8 RNA, which was synthesized in vitro from cDNA, and NP purified from virions. Under optimum conditions established using a filter binding assay and a gel retardation assay, NP was found to bind any RNA longer than 15 nucleotides. NP-RNA complexes formed at 30 degrees C are more resistant to high concentrations of NaCl than those formed at 0 degrees C. Treatment of NP with N-ethylmaleimide gave no effect on its RNA binding activity, whereas treatment with alkaline phosphatase enhanced its RNA binding activity. The newly developed "reverse-printing" method of RNase V1-treated complexes revealed that reconstituted NP-RNA complexes carry RNase V1-sensitive sites as do native ribonucleoprotein (RNP) cores (RNA polymerase-NP-RNA complexes), implying that RNA-NP complexes structurally similar to native RNP cores are reconstituted from isolated components.  相似文献   

11.
Transcription boundaries of U1 small nuclear RNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

12.
13.
Complete nucleotide sequence of alfalfa mosaic virus RNA 4.   总被引:5,自引:11,他引:5       下载免费PDF全文
Alfalfa mosaic virus RNA 4, the subgenomic messenger for viral coat protein, was partially digested with RNase T1 or RNase A and the sequence of a number of fragments was deduced by in vitro labeling with polynucleotide kinase and application of RNA sequencing techniques. From overlapping fragments, the complete primary sequence of the 881 nucleotides of RNA 4 was constructed: the coding region of 660 nucleotides (not including the initiation and termination codon) is flanked by a 5' noncoding region of 39 nucleotides and a 3' noncoding region of 182 nucleotides. The RNA sequencing data completely confirm the amino acid sequence of the coat protein as deduced by Van Beynum et al. (Fur.J. Biochem. 72, 63-78, 1977).  相似文献   

14.
A poliovirus-specific polyuridylic acid [poly(U)] polymerase that copies a polyadenylic acid template complexed to an oligouridylic acid primer was isolated from the membrane fraction of infected HeLa cells and was found to sediment at 4 to 5S on a linear 5 to 20% glycerol gradient. When the poly(U) polymerase was isolated from cells labeled with [(35)S]methionine and was analyzed by glycerol gradient centrifugation and polyacrylamide gel electrophoresis, the position of only one viral protein was found to correlate with the location of enzyme activity. This protein had an apparent molecular weight of 62,500 based on its electrophoretic mobility relative to that of several molecular weight standards and was designated p63. When the poly(U) polymerase was isolated from the soluble fraction of a cytoplasmic extract, the activity was found to sediment at about 7S. In this case, however, both p63 and NCVP2 (77,000-dalton precursor of p63) cosedimented with the 7S activity peak. When the 7S polymerase activity was purified by phosphocellulose chromatography, both p63 and NCVP2 were found to co-chromatograph with poly(U) polymerase activity. The poliovirus replicase complexed with its endogenous RNA template was isolated from infected cells labeled with [(35)S]methionine and was centrifuged through a linear 15 to 30% glycerol gradient. The major viral polypeptide component in a 26S peak of replicase activity was p63, but small amounts of other poliovirus proteins were also present. When the replicase-template complex was treated with RNase T1 before centrifugation, a single peak of activity was found that sedimented at 20S and contained only labeled p63. Thus, p63 was found to be the only viral polypeptide in the replicase bound to its endogenous RNA template, and appears to be active as a poly(U) polymerase either as a monomer protein or as a 7S complex.  相似文献   

15.
Umbraviruses are different from most other viruses in that they do not encode a conventional capsid protein (CP); therefore, no recognizable virus particles are formed in infected plants. Their lack of a CP is compensated for by the ORF3 protein, which fulfils functions that are provided by the CPs of other viruses, such as protection and long-distance movement of viral RNA. When the Groundnut rosette virus (GRV) ORF3 protein was expressed from Tobacco mosaic virus (TMV) in place of the TMV CP [TMV(ORF3)], in infected cells it interacted with the TMV RNA to form filamentous ribonucleoprotein (RNP) particles that had elements of helical structure but were not as uniform as classical virions. These RNP particles were observed in amorphous inclusions in the cytoplasm, where they were embedded within an electron-dense matrix material. The inclusions were detected in all types of cells and were abundant in phloem-associated cells, in particular companion cells and immature sieve elements. RNP-containing complexes similar in appearance to the inclusions were isolated from plants infected with TMV(ORF3) or with GRV itself. In vitro, the ORF3 protein formed oligomers and bound RNA in a manner consistent with its role in the formation of RNP complexes. It is suggested that the cytoplasmic RNP complexes formed by the ORF3 protein serve to protect viral RNA and may be the form in which it moves through the phloem. Thus, the RNP particles detected here represent a novel structure which may be used by umbraviruses as an alternative to classical virions.  相似文献   

16.
32P- and methyl-3H-labeled 70S Moloney murine leukemia virus RNA was purified from virions produced in Moloney murine leukemia virus-infected mouse embryo cells. Primer-free RNA subunits obtained by heat treatment and zonal centrifugation were digested with RNase T2, and methylated oligonucleotides were chromatographed on DEAE-Sephadex in 7 M urea. Approximately one molecule of RNase T2-stable oligonucleotide (-5 charge) was isolated per subunit. Structural analysis indicated that the sequence of the oligonucleotide is m7GpppGmpCp. Analysis of the mononucleotide fraction isolated by DEAE-Sephadex chromatography of the RNase T2 digest identified 15 to 23 internal N6-methyladenylic acid molecules per subunit.  相似文献   

17.
Structures with RNA polymerase activity were isolated from influenza virus-infected cells, and consisted of ribonucleoprotein (RNP) complexes, similar in morphology to the viral internal component or nucleocapsid. The isolation procedure involved fractionation of infected cells in a discontinuous sucrose gradient, in which enzyme activity was concentrated in a fraction of intermediate density which contains both smooth and rough cytoplasmic membranes. The RNPs with polymerase activity were further purified in a velocity gradient, after which the peak fractions showed a 35-fold purification of the polymerase activity when compared with cytoplasmic extracts. The NP polypeptide, which is the subunit of the virion RNP, was the only virus-specific polypeptide detected in these RNP structures.  相似文献   

18.
19.
An efficient method for the isolation of RNA from cartilage is described. The difficulties in obtaining RNA from cartilage, a tissue of low cell density and high proteoglycan content, were overcome by making several modifications to the guanidine thiocyanate/cesium chloride method of RNA extraction. Cartilage tissue is frozen, crushed, and homogenized in a 4 M guanidine thiocyanate lysis buffer. The RNA is then pelleted by ultracentrifugation through a cesium trifluoroacetate density gradient. The use of cesium trifluoroacetate, rather than cesium chloride, for density gradient centrifugation improves both the yield and purity of total RNA isolated from cartilage. The ultracentrifugation has been adapted to the Beckman TL100 tabletop centrifuge and is complete in 3 h. This fast, simple method produces high quality RNA, suitable for use in RNase protection assays, polymerase chain reaction analysis, and Northern analysis. This purification procedure may be applicable to other sources, from which RNA isolation is complicated by the presence of abundant cell wall or matrix components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号