首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of residual dipolar couplings (RDCs) by quantitative J spectroscopy methods such as Heteronuclear Single Quantum Correlation with Phase Encoded Coupling (HSQC-PEC) is prone to systematic errors that may be caused by differential attenuation during the conversion of orthogonal density operator components into observable terms. The attenuation may be caused by miscalibration of radio-frequency pulses and by relaxation effects. A simple method is presented that allows one to remove most of these systematic errors without losses in sensitivity or resolution.  相似文献   

2.
Ohnishi S  Shortle D 《Proteins》2003,50(4):546-551
Residual dipolar couplings provide information on the orientation of individual bond vectors with respect to a unique set of molecular axes. We report that short peptides from 2 to 15 amino acids in length of arbitrary sequence exhibit a modest range of residual dipolar couplings when aligned in either strained polyacrylamide gels or alkyl-PEG bicelles. The absence of significant line broadening in gels suggests peptides align predominantly through steric interactions with the polyacrylamide matrix. However, broadening of NMR lines for a subset of residues aligned in bicelles indicates some peptides bind weakly to these lipid disks, yet a weak negative correlation between the couplings measured in gels and bicelles is consistent with steric hindrance playing a role in both media. The observation of dipolar couplings for peptides of length 10-15 suggests the statistical segment lengths of polypeptide chains must often be >10-15 residues, with data from denatured proteins indicating even larger values. Presumably, local side-chain backbone interactions severely restrict chain flexibility, with the cumulative effect of many such restrictions giving rise to biases in chain direction that may persist for the entire length of a protein chain. Comparison of experimental dipolar couplings for peptides with couplings calculated for ensembles of conformations generated by molecular dynamics should permit evaluation of the accuracy of molecular mechanics potentials in reproducing sequence-specific preferences for phi and psi angles.  相似文献   

3.
A method for incorporating dipolar coupling restraints into structure calculations is described which follows closely on methodology that has been recently presented for orienting peptide planes using dipolar couplings [Mueller et al. (2000) J. Mol. Biol., 300, 197–212] and is specifically developed for use in cases of an axially symmetric alignment tensor. Modeling studies on an all -helical protein, farnesyl diphosphate synthase, establish the utility of the approach. A global fold of the 370-residue maltose binding protein in complex with -cyclodextrin is obtained from experimentally derived restraints. The average pairwise rmsd values between the N- and C-terminal domains in this NMR structure and the corresponding regions in the X-ray structure of the protein are 2.8 and 3.1 Å, respectively.  相似文献   

4.
In solutions with partial molecular alignment, anisotropic magnetic interactions such as the chemical shift anisotropy, the electric quadrupole interaction, and the magnetic dipole-dipole interaction are no longer averaged out to zero in contrast to isotropic solutions. The resulting residual anisotropic magnetic interactions are increasingly used in biological NMR studies for the determination of 3D structures of proteins and other biomolecules. In the present paper we propose a new approach allowing the measurement of residual HN-H dipolar couplings of non-isotope enriched proteins based on the application of the MOCCA-SIAM experiment. This experiment allows the measurement of homonuclear coupling constants with an accuracy of ca. ±0.2 Hz and is therefore particularly well suited to determine residual dipolar couplings at relatively low degrees of molecular orientation. The agreement between experimentally determined residual HN-H couplings and calculated values is demonstrated for BPTI.  相似文献   

5.
Residual dipolar couplings are potentially very powerful probes of slower protein motions, providing access to dynamic events occurring on functionally important timescales up to the millisecond. One recent approach uses the three dimensional Gaussian Axial Fluctuation model (3D GAF) to determine the major directional modes and associated amplitudes of motions along the peptide chain. In this study we have used standard and accelerated molecular dynamics simulations to determine the accuracy of 3D GAF-based approaches in characterizing the nature and extent of local molecular motions. We compare modes determined directly from the trajectories with motional parameterization derived from RDCs simulated from the same trajectories. Three approaches are tested, that either suppose a known three-dimensional structure, simultaneously determine backbone structure and dynamics, or determine dynamic modes in the absence of a structural model. The results demonstrate the robustness of the 3D GAF analysis even in the presence of large-scale motions, and illustrate the remarkably quantitative nature of the extracted amplitudes. These observations suggest that the approach can be generally used for the study of functionally interesting biomolecular motions.  相似文献   

6.
Residual dipolar couplings are useful global structural restraints. The dipolar couplings define the orientation of a vector with respect to the alignment tensor. Although the size of the alignment tensor can be derived from the distribution of the experimental dipolar couplings, its orientation with respect to the coordinate system of the molecule is unknown at the beginning of structure determination. This causes convergence problems in the simulated annealing process. We therefore propose a protocol that translates dipolar couplings into intervector projection angles, which are independent of the orientation of the alignment tensor with respect to the molecule. These restraints can be used during the whole simulated annealing protocol.  相似文献   

7.
For the Ras-binding domain of the protein kinase Byr2, only a limited number of NOE contacts could be initially assigned unambiguously, as the quality of the NOESY spectra was too poor. However, the use of residual (1)H-(15)N dipolar couplings in the beginning of the structure determination process allows to overcome this problem. We used a three-step recipe for this procedure. A previously unknown structure could be calculated reasonably well with only a limited number of unambiguously assigned NOE contacts.  相似文献   

8.
A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to the magnetic field, a closed-form analytical result is derived. With the obtained analytical expression the RDCs are readily accessible for any locus along the chain, for chains of differing length, and for varying bicelle concentrations. The two general features predicted by the model are (i) RDCs in the center segments of a polypeptide chain are larger than RDCs in the end segments, resulting in a bell-shaped sequential distribution of RDCs, and (ii) couplings are larger for shorter chains than for longer chains at a given bicelle concentration. Experimental data available from the literature confirm the first prediction of the model, providing a tool for recognizing fully unfolded polypeptide chains. With less certainty experimental data appear to support the second prediction as well. However, more systematic experimental studies are needed in order to validate or disprove the predictions of the model. The presented framework is an important step towards a solid theoretical foundation for the analysis of experimentally measured RDCs in unfolded proteins in the case of alignment media such as polyacrylamide gels and neutral bicelle systems which align biomacromolecules by a steric mechanism. Various improvements and generalizations are possible within the suggested approach.  相似文献   

9.
The ligand-binding properties of a 53 kDa homomultimeric trimer from mannose-binding protein (MBP) have been investigated using residual dipolar couplings (RDCs) that are easily measured from NMR spectra of the ligand and isotopically labeled protein. Using a limited set of 1H-15N backbone amide NMR assignments for MBP and orientational information derived from the RDC measurements in aligned media, an order tensor for MBP has been determined that is consistent with symmetry-based predictions of an axially symmetric system. 13C-1H couplings for a bound trisaccharide ligand, methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (trimannoside) have been determined at natural abundance and used as orientational constraints. The bound ligand geometry and orientational constraints allowed docking of the trimannoside ligand in the binding site of MBP to produce a structural model for MBP-oligosaccharide interactions.  相似文献   

10.
11.
The structure of the 13C,15N-labeled d(GCGAAGC) hairpin, as determined by NMR spectroscopy and refined using molecular dynamics with NOE-derived distances, torsion angles, and residual dipolar couplings (RDCs), is presented. Although the studied molecule is of small size, it is demonstrated that the incorporation of diminutive RDCs can significantly improve local structure determination of regions undefined by the conventional restraints. Very good correlation between the experimental and back-calculated small one- and two-bond 1H-13C, 1H-15N, 13C-13C and 13C-15N coupling constants has been attained. The final structures clearly show typical features of the miniloop architecture. The structure is discussed in context of the extraordinary stability of the d(GCGAAGC) hairpin, which originates from a complex interplay between the aromatic base stacking and hydrogen bonding interactions.  相似文献   

12.
Previous NMR structural studies of the heparin-binding domain of vascular endothelial growth factor (VEGF165) revealed a novel fold comprising two subdomains, each containing two disulfide bridges and a short two-stranded antiparallel -sheet. The mutual orientation of the two subdomains was poorly defined by the NMR data. Heteronuclear relaxation data suggested that this disorder resulted from a relative lack of experimental restraints due to the limited size of the interface, rather than inherent high-frequency flexibility. Refinement of the structure using 1HN-15N residual dipolar coupling restraints results in significantly improved definition of the relative subdomain orientations.  相似文献   

13.
The main limitation in NMR-determined structures of nucleic acids and their complexes with proteins derives from the elongated, non-globular nature of physiologically important DNA and RNA molecules. Since it is generally not possible to obtain long-range distance constraints between distinct regions of the structure, long-range properties such as bending or kinking at sites of protein recognition cannot be determined accurately nor precisely. Here we show that use of residual dipolar couplings in the refinement of the structure of a protein–RNA complex improves the definition of the long-range properties of the RNA. These features are often an important aspect of molecular recognition and biological function; therefore, their improved definition is of significant value in RNA structural biology.  相似文献   

14.
A 2D-HSQC-carbon selective/proton selective-constant time COSY, 2D-HSQC-(sel C, sel H)-CT COSY experiment, which is applicable to uniformly 13C isotopically enriched samples (U-13C) of oligosaccharides or oligonucleotides is proposed for the measurement of proton–proton RDC in crowded regions of 2D-spectra. In addition, a heteronuclear constant time-COSY experiment, 13C-13C CT-COSY, is proposed for the measurement of one bond carbon–carbon RDC in these molecules. These two methods provide an extension, to U-13C molecules, of the original homonuclear constant time-COSY experiment proposed by Tian et al. (1999) for saccharides. The combination of a number of these RDC with NOE data may provide the method of choice to study oligosaccharide conformation in the free and receptor-bound state.  相似文献   

15.
Residual dipolar couplings measured in weakly aligning liquid-crystalline solvent contain valuable information on the structure of biomolecules in solution. Here we demonstrate that dipolar couplings (DCs) can be used to derive a comprehensive set of pairwise angular restraints that do not depend on the orientation of the alignment tensor principal axes. These restraints can be used to assess the agreement between a trial protein structure and a set of experimental dipolar couplings by means of a graphic representation termed a `DC consistency map'. Importantly, these maps can be used to recognize structural elements consistent with the experimental DC data and to identify structural parameters that require further refinement, which could prove important for the success of DC-based structure calculations. This approach is illustrated for the 42 kDa maltodextrin-binding protein.  相似文献   

16.
Using ensemble refinement of the third immunoglobulin binding domain (GB3) of streptococcal protein G (a small alpha/beta protein of 56 residues), we demonstrate that backbone (N-H, N-C', Calpha-Halpha, Calpha-C') residual dipolar coupling data in five independent alignment media, generalized order parameters from 15N relaxation data, and B-factors from a high-resolution (1.1A), room temperature crystal structure are entirely consistent with one another within experimental error. The optimal ensemble size representation is between four and eight, as assessed by complete cross-validation of the residual dipolar couplings. Thus, in the case of GB3, all three observables reflect the same low-amplitude anisotropic motions arising from fluctuations in backbone phi/psi torsion angles in the picosecond to nanosecond regime in both solution and crystalline environments, yielding a unified picture of fast, high-probability atomic motions in proteins. An understanding of these motions is crucial for understanding the impact of protein dynamics on protein function, since they provide part of the driving force for triggered conformational changes that occur, for example, upon ligand binding, signal transduction and enzyme catalysis.  相似文献   

17.
It has been suggested that the fluctuations of the alignment tensor can affect the results of procedures for characterizing the structure and the dynamics of proteins using residual dipolar couplings. We show here that the very significant fluctuations of the steric alignment tensor caused by the dynamics of proteins can be safely ignored when they do not correlate with those of the bond vectors. A detailed analysis of these correlations in the protein ubiquitin reveals that their effects are negligible for the analysis of backbone motions within secondary structure elements, but also that they may be significant in turns, loops and side chains, especially for bond vectors that have small residual dipolar couplings. Our results suggest that methods that explicitly consider the motions of the alignment tensor will be needed to study the large-scale structural fluctuations that take place on the millisecond timescale, which are often important for the biological function of proteins, from residual dipolar coupling measurements.  相似文献   

18.
New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles and that resemble those of the known native structure. Subsequent refinement of these - angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 Å C rmsd.  相似文献   

19.
We report a new residual dipolar couplings (RDCs) based NMR procedure for rapidly determining RNA tertiary structure demonstrated on a uniformly (15)N/(13)C-labeled 27 nt variant of the trans-activation response element (TAR) RNA from HIV-I. In this procedure, the time-consuming nuclear Overhauser enhancement (NOE)-based sequential assignment step is replaced by a fully automated RDC-based assignment strategy. This approach involves examination of all allowed sequence-specific resonance assignment permutations for best-fit agreement between measured RDCs and coordinates for sub-structures in a target RNA. Using idealized A-form geometries to model Watson-Crick helices and coordinates from a previous X-ray structure to model a hairpin loop in TAR, the best-fit RDC assignment solutions are determined very rapidly (相似文献   

20.
The Ca2 calbindin protein in which one calcium has been substituted with Ce(III), Yb(III) and Dy(III) displays substantial alignment in high magnetic fields due to the high anisotropy of the metal magnetic susceptibility. This property has allowed the measurement of residual dipolar coupling contributions to 1 J HNand 2 J HH couplings of asparagine and glutamine NH2 moieties. Such data have been used to aid structural characterization of these groups. The exploitation of auto-orientation of magnetic anisotropic metalloproteins represents a step ahead in the investigation of the conformational space of peripheral residues that are not fixed by the protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号