首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song L  Li J  Xie S  Qian C  Wang J  Zhang W  Yin X  Hua Z  Yu C 《PloS one》2012,7(2):e31456

Background

Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia.

Methods and Findings

After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice.

Conclusions

Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum.  相似文献   

2.
3.
Prostaglandin (PG) D2, a major cyclooxygenase product in a variety of tissues and cells, readily undergoes dehydration to yield the bioactive cyclopentenone-type PGs of the J2 series, such as 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2). We have shown previously that 15d-PGJ2 is a potent electrophile that causes intracellular oxidative stress and redox alteration in human neuroblastoma SH-SY5Y cells. In the present study, based on the observation that the electrophilic center of 15d-PGJ2 was involved in the pro-oxidant effect, we investigated the role of thioredoxin 1 (Trx), an endogenous redox regulator, against 15d-PGJ2-induced oxidative cell injury. It was observed that the 15d-PGJ2-induced oxidative stress was significantly suppressed by the Trx overexpression. In addition, the treatment of SH-SY5Y cells with biotinylated 15d-PGJ2 resulted in the formation of a 15d-PGJ2-Trx adduct, indicating that 15d-PGJ2 directly modified the endogenous Trx in the cells. To further examine the mechanism of the 15d-PGJ2 modification of Trx, human recombinant Trx treated with 15d-PGJ2 was analyzed by mass spectrometry. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the 15d-PGJ2-treated human recombinant Trx demonstrated the addition of one molecule of 15d-PGJ2 per protein molecule. Moreover, the electrospray ionization-liquid chromatography/mass spectrometry/mass spectrometry analysis identified two cysteine residues, Cys-35 and Cys-69, as the targets of 15d-PGJ2. These residues may represent the direct sensors of the electrophilic PGs that induce the intracellular redox alteration and neuronal cell death.  相似文献   

4.
5.
Dihydrofolate reductase as a therapeutic target   总被引:9,自引:0,他引:9  
The folate antagonists are an important class of therapeutic compounds, as evidenced by their use as antiinfective, antineoplastic, and antiinflammatory drugs. Thus far, all of the clinically useful drugs of this class have been inhibitors of dihydrofolate reductase (DHFR), a key enzyme in the synthesis of thymidylate, and therefore, of DNA. The basis of the antiinfective selectivity of these compounds is clear; the antifolates trimethoprim and pyrimethamine are potent inhibitors of bacterial and protozoal DHFRs, respectively, but are only weak inhibitors of mammalian DHFRs. These species-selective agents apparently exploit the differences in the active site regions of the parasite and host enzymes. Methotrexate is the DHFR inhibitor used most often in a clinical setting as an anticancer drug and as an antiinflammatory and immunosuppressive agent. Considerable progress has been made recently in understanding the biochemical basis for the selectivity of this drug and the biochemical mechanism (or mechanisms) responsible for the development of resistance to treatment with the drug. This understanding has led to a new generation of DHFR inhibitors that are now in clinical trials.  相似文献   

6.
7.
Many animal and plant viruses encode proteolytic enzymes which are involved in regulation of viral replication and assembly. The proteases are becoming well-characterized, and offer attractive features for the design of selective antiviral agents. Approaches to the assay of viral protease inhibitors and the various classes identified are described.  相似文献   

8.
9.
The elucidation of the crystal structure of the ribosome and its subunits has dramatically increased our understanding of this organelle and the molecular interactions that determine its functional capabilities. Two recent publications, one on the structure of the bacterial ribosome at 3.5A resolution and one on the identification of functionally relevant sites within the small subunit rRNA, illustrate the importance of interdisciplinary approaches in exploiting the ribosome as a drug target.  相似文献   

10.
The mosquito, Anopheles gambiae, is an important vector of Plasmodium falciparum malaria. Full genome analysis revealed that, as in Drosophila melanogaster, the enzyme glutathione reductase is absent in A. gambiae and functionally substituted by the thioredoxin system. The key enzyme of this system is thioredoxin reductase-1, a homodimeric FAD-containing protein of 55.3 kDa per subunit, which catalyses the reaction NADPH + H+ + thioredoxin disulfide-->NADP+ + thioredoxin dithiol. The A. gambiae trxr gene is located on chromosome X as a single copy; it represents three splice variants coding for two cytosolic and one mitochondrial variant. The predominant isoform, A. gambiae thioredoxin reductase-1, was recombinantly expressed in Escherichia coli and functionally compared with the wild-type enzyme isolated in a final yield of 1.4 U.ml(-1) of packed insect cells. In redox titrations, the substrate A. gambiae thioredoxin-1 (Km=8.5 microm, kcat=15.4 s(-1) at pH 7.4 and 25 degrees C) was unable to oxidize NADPH-reduced A. gambiae thioredoxin reductase-1 to the fully oxidized state. This indicates that, in contrast to other disulfide reductases, A. gambiae thioredoxin reductase-1 oscillates during catalysis between the four-electron reduced state and a two-electron reduced state. The thioredoxin reductases of the malaria system were compared. A. gambiae thioredoxin reductase-1 shares 52% and 45% sequence identity with its orthologues from humans and P. falciparum, respectively. A major difference among the three enzymes is the structure of the C-terminal redox centre, reflected in the varying resistance of catalytic intermediates to autoxidation. The relevant sequences of this centre are Thr-Cys-Cys-SerOH in A. gambiae thioredoxin reductase, Gly-Cys-selenocysteine-GlyOH in human thioredoxin reductase, and Cys-X-X-X-X-Cys-GlyOH in the P. falciparum enzyme. These differences offer an interesting approach to the design of species-specific inhibitors. Notably, A. gambiae thioredoxin reductase-1 is not a selenoenzyme but instead contains a highly unusual redox-active Cys-Cys sequence.  相似文献   

11.
12.
Thioredoxin acts as a B cell growth factor in channel catfish   总被引:3,自引:0,他引:3  
To identify differentially expressed genes from channel catfish macrophages, a cDNA library from LPS-stimulated catfish macrophages was screened by subtractive hybridization. This screening yielded a 552-bp cDNA coding for catfish thioredoxin (CF-TRX). The deduced amino acid sequence revealed that CF-TRX contains 107 amino acids and is 59% homologous to human adult T cell leukemia-derived factor/TRX, originally described as an IL-2R alpha-inducing factor. Northern blot analyses showed that CF-TRX is expressed in catfish T and macrophage cell lines, but weakly in B cell lines. Similar results were also observed in Western blot analyses using a mAb specific for recombinant CF-TRX (rTRX). The use of rTRX in functional studies demonstrated that rTRX induces in vitro proliferative responses of catfish PBL that were synergistically enhanced by the addition of culture supernatants from catfish T cell lines. In addition, cell separation studies and flow cytometric analyses revealed that the cells proliferating in rTRX-stimulated cultures were mostly B cells. These results suggest that CF-TRX may have an important role in the activation and proliferation of channel catfish B cells.  相似文献   

13.
Thioredoxin reductase (EC 1.6.4.5) is a widely distributed flavoprotein that catalyzes the NADPH-dependent reduction of thioredoxin. Thioredoxin plays several key roles in maintaining the redox environment of the cell. Like all members of the enzyme family that includes lipoamide dehydrogenase, glutathione reductase and mercuric reductase, thioredoxin reductase contains a redox active disulfide adjacent to the flavin ring. Evolution has produced two forms of thioredoxin reductase, a protein in prokaryotes, archaea and lower eukaryotes having a Mr of 35 000, and a protein in higher eukaryotes having a Mr of 55 000. Reducing equivalents are transferred from the apolar flavin binding site to the protein substrate by distinct mechanisms in the two forms of thioredoxin reductase. In the low Mr enzyme, interconversion between two conformations occurs twice in each catalytic cycle. After reduction of the disulfide by the flavin, the pyridine nucleotide domain must rotate with respect to the flavin domain in order to expose the nascent dithiol for reaction with thioredoxin; this motion repositions the pyridine ring adjacent to the flavin ring. In the high Mr enzyme, a third redox active group shuttles the reducing equivalent from the apolar active site to the protein surface. This group is a second redox active disulfide in thioredoxin reductase from Plasmodium falciparum and a selenenylsulfide in the mammalian enzyme. P. falciparum is the major causative agent of malaria and it is hoped that the chemical difference between the two high Mr forms may be exploited for drug design.  相似文献   

14.
The X-ray crystal structure of the enzyme trypanothione reductase, isolated from the trypanosomatid organism Crithidia fasciculata, has been solved by molecular replacement. The search model was the crystal structure of human glutathione reductase that shares approximately 40% sequence identity. The trypanosomal enzyme crystallizes in the tetragonal space group P4(1) with unit cell lengths of a = 128.9 A and c = 92.3 A. The asymmetric unit consists of a homodimer of approximate molecular mass 108 kDa. We present the structural detail of the active site as derived from the crystallographic model obtained at an intermediate stage of the analysis using diffraction data to 2.8 A resolution with an R-factor of 23.2%. This model has root-mean-square deviations from ideal geometry of 0.026 A for bond lengths and 4.7 degrees for bond angles. The trypanosomid enzyme assumes a similar biological function to glutathione reductase and, although similar in topology to human glutathione reductase, has an enlarged active site and a number of amino acid differences, steric and electrostatic, which allows it to process only the unique substrate trypanothione and not glutathione. This protein represents a prime target for chemotherapy of several debilitating tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania. The structural differences between the parasite and host enzymes and their substrates thus provides a rational basis for the design of new drugs active against trypanosomes. In addition, our model explains the results of site-directed mutagenesis experiments, carried out on recombinant trypanothione reductase and glutathione reductases, designed by consideration of the crystal structure of human glutathione reductase.  相似文献   

15.
Malaria is caused by species in the apicomplexan genus Plasmodium, which infect hundreds of millions of people each year and kill close to one million. While malaria is the most notorious of the apicomplexan-caused diseases, other members of eukaryotic phylum Apicomplexa are responsible for additional, albeit less well-known, diseases in humans, economically important livestock, and a variety of other vertebrates. Diseases such as babesiosis (hemolytic anemia), theileriosis and East Coast Fever, cryptosporidiosis, and toxoplasmosis are caused by the apicomplexans Babesia, Theileria, Cryptosporidium and Toxoplasma, respectively. In addition to the loss of human life, these diseases are responsible for losses of billions of dollars annually. Hence, the research into new drug targets remains a high priority. Ribonucleotide reductase (RNR) is an essential enzyme found in all domains of life. It is the only means by which de novo synthesis of deoxyribonucleotides occurs, without which DNA replication and repair cannot proceed. RNR has long been the target of antiviral, antibacterial and anti-cancer therapeutics. Herein, we review the chemotherapeutic methods used to inhibit RNR, with particular emphasis on the role of RNR inhibition in Apicomplexa, and in light of the novel RNR R2_e2 subunit recently identified in apicomplexan parasites.  相似文献   

16.
17.
The thioredoxin system facilitates proliferative processes in cells and is upregulated in many cancers. The activities of both thioredoxin (Trx) and its reductase (TrxR) are mediated by oxidation/reduction reactions among cysteine residues. A common target in preclinical anticancer research, TrxR is reported here to be significantly inhibited by the anticancer agent laromustine. This agent, which has been in clinical trials for acute myelogenous leukemia and glioblastoma multiforme, is understood to be cytotoxic principally via interstrand DNA crosslinking that originates from a 2-chloroethylating species generated upon activation in situ. The spontaneous decomposition of laromustine also yields methyl isocyanate, which readily carbamoylates thiols and primary amines. Purified rat liver TrxR was inhibited by laromustine with a clinically relevant IC50 value of 4.65 μM. A derivative of laromustine that lacks carbamoylating activity did not appreciably inhibit TrxR while another derivative, lacking only the 2-chloroethylating activity, retained its inhibitory potency. Furthermore, in assays measuring TrxR activity in murine cell lysates, a similar pattern of inhibition among these compounds was observed. These data contrast with previous studies demonstrating that glutathione reductase, another enzyme that relies on cysteine-mediated redox chemistry, was not inhibited by methylcarbamoylating agents when measured in cell lysates. Mass spectrometry of laromustine-treated enzyme revealed significant carbamoylation of TrxR, albeit not on known catalytically active residues. However, there was no evidence of 2-chloroethylation anywhere on the protein. The inhibition of TrxR is likely to contribute to the cytotoxic, anticancer mechanism of action for laromustine.  相似文献   

18.
Plasmodium falciparum is the vector of the most prevalent and deadly form of malaria, and, among the Plasmodium species, it is the one with the highest rate of drug resistance. At the basis of a rational drug design project there is the selection and characterization of suitable target(s). Thioredoxin reductase, the first protection against reactive oxygen species in the erythrocytic phase of the parasite, is essential for its survival. Hence it represents a good target for the design of new anti-malarial active compounds. In this paper we present the first crystal structure of recombinant P. falciparum thioredoxin reductase (PfTrxR) at 2.9 Å and discuss its differences with respect to the human orthologue. The most important one resides in the dimer interface, which offers a good binding site for selective non competitive inhibitors. The striking conservation of this feature among the Plasmodium parasites, but not among other Apicomplexa parasites neither in mammals, boosts its exploitability.  相似文献   

19.
Ribonucleotide reductase(RNR), the rate-limitingenzyme in DNA synthesis, catalyzes reduction of thedifferent ribonucleotides to their corresponding deoxyri-bonucleotides. The crucial role of RNR in DNA synthesishas made it an important target for the development ofantiviral and anticancer drugs. Taking account of the re-cent developments in this field of research, this reviewfocuses on the role of thioredoxin and glutaredoxin sys-tems in the redox reactions of the RNR catalysis.  相似文献   

20.
Ribonucleotide reductase (RNR), the rate-limiting enzyme in DNA synthesis, catalyzes reduction of the different ribonucleotides to their corresponding deoxyribonucleotides. The crucial role of RNR in DNA synthesis has made it an important target for the development of antiviral and anticancer drugs. Taking account of the recent developments in this field of research, this review focuses on the role of thioredoxin and glutaredoxin systems in the redox reactions of the RNR catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号