首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of dilute solutions of crystalline trypsin is destroyed by x-rays. The inactivation is an exponential function of the radiation dose. The reaction yield of inactivation is independent of the intensity at which the radiation is delivered or the quality of the x-rays. The reaction yield increases with increasing concentration of trypsin, varying from 0.06 to 0.7 micromoles per liter per 1000 r for trypsin solutions ranging from 1 x 10(-7) to 2 x 10(-4)M.  相似文献   

2.
1. The rate of inactivation of crystalline trypsin solutions and the nature of the products formed during the inactivation at various pH at temperatures below 37°C. have been studied. 2. The inactivation may be reversible or irreversible. Reversible inactivation is accompanied by the formation of reversibly denatured protein. This denatured protein exists in equilibrium with the native active protein and the equilibrium is shifted towards the denatured form by raising the temperature or by increasing the alkalinity. The decrease in the fraction of active enzyme present (due to the formation of this reversibly denatured protein) as the pH is increased from 8.0 to 12.0 accounts for the decrease in the rate of digestion of proteins by trypsin in this range of pH. 3. The loss of activity at high temperatures or in alkaline solutions, just described, is very rapid and is completely reversible for a short time only. If the solutions are allowed to stand the loss in activity becomes gradually irreversible and is accompanied by the appearance of various reaction products the nature of which depends upon the temperature and pH of the solution. 4. On the acid side of pH 2.0 the trypsin protein is changed to an inactive form which is irreversibly denatured by heat. The course of the reaction in this range is monomolecular and its velocity increases as the acidity increases. 5. From pH 2.0 to 9.0 trypsin protein is slowly hydrolyzed. The course of the inactivation in this range of pH is bimolecular and its velocity increases as the alkalinity increases to pH 10.0 and then decreases. As a result of these two reactions there is a point of maximum stability at about pH 2.3. 6. On the alkaline side of pH 13.0 the reaction is similar to that in strong acid solution and consists in the formation of inactive protein. The course of the reaction is monomolecular and the velocity increases with increasing alkalinity. From pH 9.0 to 12.0 some hydrolysis takes place and some inactive protein is formed and the course of the reaction is represented by the sum of a bi- and monomolecular reaction. The rate of hydrolysis decreases as the solution becomes more alkaline than pH 10.0 while the rate of formation of inactive protein increases so that there is a second point at about pH 13.0 at which the rate of inactivation is a minimum. In general the decrease in activity under all these conditions is proportional to the decrease in the concentration of the trypsin protein. Equations have been derived which agree quantitatively with the various inactivation experiments.  相似文献   

3.
1. The rate of inactivation of purified trypsin solutions approximates closely that demanded by the monomolecular formula. The more carefully the solution is purified the closer the agreement with the formula. 2. The products formed by the action of trypsin on proteins renders the trypsin more stable. Gelatin and glycine have no effect. 3. The rate of inactivation of trypsin solutions containing these products does not follow the course of a monomolecular reaction but becomes progressively slower than the predicted rate. 4. The protective action of these substances is much greater if they are added all at once at the beginning of the experiment than if they are added at intervals. These observations may be quantitatively accounted for by the hypothesis that a compound is formed between trypsin and the inhibiting substance which is stable as well as inactive, and that the rate of decomposition depends on the amount of uncombined trypsin present. 5. Trypsin is most stable at a pH of 5 and is rapidly destroyed in strongly acid or alkaline solution. 6. The protective effect of the inhibiting substances is small on the acid side of pH 5, increases from pH 5 to 7, and then remains approximately constant.  相似文献   

4.
The production of pertussis toxin by Bordetella pertussis was increased by controlling the pH at 7.0 through the addition of sulfuric acid. The more commonly used hydrochloric acid and Tris buffer were observed to be detrimental to toxin yields.  相似文献   

5.
Detailed schemes are described for the preparation of purified methylene blue and azure B from commercial samples of methylene blue. Purified methylene blue is obtained by extracting a solution of the commercial product in an aqueous buffer (pH 9.5) with carbon tetrachloride. Methylene blue remains in the aqueous layer but contaminating dyes pass into the carbon tetrachloride. Metal salt contaminants are removed when the dye is crystallized by the addition of hydrochloric acid at a final concentration of 0.25 N. Purified azure B is obtained by extracting a solution of commercial methylene blue in dilute aqueous sodium hydroxide (pH 11-11.5) with carbon tetrachloride. In this pH range, methylene blue is unstable and yields azure B. The latter passes into the carbon tetrachloride layer as it is formed. Metal salt contaminants remain in the aqueous layer. A concentrated solution oa azure B is obtained by extracting the carbon tetrachloride layer with 4.5 X 10(-4)N hydrobromic acid. The dye is then crystallized by increasing the hydrobromic acid concentration to 0.23 N. Thin-layer chromatography of the purified dyes shows that contamination with related thiazine dyes is absent or negligible. Ash analyses reveal that metal salt contamination is also negligible (sulphated ash less than 0.2%).  相似文献   

6.
The radiation yeilds of unfolding (Gconf) determined by the method of tryptophan fluorescence coincide with the radiation yields of proteolytic inactivation (Gin) for chymotrypsin-like (CT-like) enzymes on irradiation in air, both in solution and in the dry state with futher dissolution at pH7. It can be supposed that the unfolding is the main process determining the proteolytic gamma-inactivation of CT-like enzymes. It was also shown that the transition of chymotrypsin and trypsin gamma-irradiated at acid pH to neutral pH is an additional action, leading to unfolding of part of the molecules.  相似文献   

7.
Preparation of Reversibly Inactivated (R.I.) Phage.- If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5-6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.- The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0 degrees C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.- There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20 degrees C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active right harpoon over left harpoon inactive phage, may be repeated many times at 0 degrees C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing irreversible inactivation, above). The concentration required to prevent R.I. is lower, the higher the valency of either the anion or cation. There are great differences, however, between salts of the same valency, so that the chemical nature as well as the valency is important. Peptone, urea, and the amino acids, tryptophan, leucine, isoleucine, methionine, asparagine, dl-cystine, valine, and phenylalanine, stabilize the system at pH 7, so that no change occurs if a mixture of R.I. and active phage is added to such solutions. The active phage remains active and the R.I. phage remains inactive. The R.I. phage in pH 7 peptone becomes active if the pH is changed to 5.0. This does not occur in solutions of urea or the amino acids which stabilize at pH 7.0. Kinetics of Reversible Inactivation.- The inactivation is too rapid, even at 0 degrees to allow the determination of an accurate time-inactivation curve. The rate is independent of the phage concentration and is complete in a few seconds, even in very dilute suspensions containing <1 x 10(4) particles/ml. This result rules out any type of bimolecular reaction, or any precipitation or agglutination mechanism, since the minimum theoretical time for precipitation (or agglutination) of a suspension of particles in a concentration of only 1 x 10(4) per ml. would be about 300 days even though every collision were effective. Mechanism of Salt Reactivation.- Addition of varying concentrations of MgSO(4) (or many other salts) to a suspension of either active or R.I. phage in 0.01 M, pH 6 acetate buffer results in the establishment of an equilibrium ratio for active/R.I. phage. The higher the concentration of salt, the larger proportion of the phage is active. The results, with MgSO(4), are in quantitative agreement with the following reaction: See PDF for Equation Effect of Temperature.- The rate of inactivation is too rapid to be measured with any accuracy, even at 0 degrees C. The rate of reactivation in pH 5 peptone, at 0 and 10 degrees , was measured and found to have a temperature coefficient Q(10) = 1.5 corresponding to a value of E (Arrhenius' constant) of 6500 cal. mole(-1). This agrees very well with the temperature coefficient for the reactivation of denatured soy bean trypsin inhibitor (Kunitz, 1948). The equilibrium between R.I. and active phage is shifted toward the active side by lowering the temperature. The ratio R.I.P./AP is 4.7 at 15 degrees and 2.8 at 2 degrees . This corresponds to a change in free energy of -600 cal. mole(-1) and a heat of reaction of 11,000. These values are much lower than the comparative one for trypsin (Anson and Mirsky, 1934 a) or soy bean trypsin inhibitor (Kunitz, 1948). Neither the inactivation nor the reactivation reactions are affected by light. The results in general indicate that there is an equilibrium between active and R.I. phage. The R.I. phage is probably an intermediate step in the formation of inactive phage. The equilibrium is shifted to the active side by lowering the temperature, adjusting the pH to 7-8 (except in the presence of high concentrations of peptone), raising the salt concentration, or increasing the valency of the ions present. The reaction may be represented by the following: See PDF for Equation The assumption that the active/R.I. phage equilibrium represents an example of native/denatured protein equilibrium predicts all the results qualitatively. Quantitatively, however, it fails to predict the relative rate of digestion of the two forms by trypsin or chymotrypsin, and also the effect of temperature on the equilibrium.  相似文献   

8.
Interactions between trypsin and each of five dansyl-arginine derivatives, dansyl-L-arginine methyl ester (L-DAME), dansyl-D-arginine methyl ester (D-DAME), dansyl-L-arginine amide (L-DAA), dansyl-L-arginine (L-DA), and dansyl-D-arginine (D-DA), are accompanied by a fluorescence intensity change which can be followed by the stopped-flow method. These compounds are substrates or products in trypsin-catalyzed hydrolysis reactions. All of these compounds, except L-DAA, show a considerable fluorescence intensity increase in the reaction with trypsin. The observed rate constant, tau obsd -1, for the initial fluorescence intensity enhancement in the reaction between trypsin and D-DAME yields a typical hyperbolic curve when the rate is plotted as a function of the ligand concentration. This result is consistent with a two-step mechanism (1) in which a fast bimolecular association process is followed by a slower unimolecular isomerization process. The isomerization process may be considered to be associated with a conformational change of the enzyme molecule, induced by the formation of the enzyme-substrate complex (1). The rate of the isomerization process depends on pH. The rates obtained for L-DAME and D-DAME increase linearly with decrease of the hydrogen ion concentration in the pH range below neutral.  相似文献   

9.
Plants of Acomastylis rossii were treated over a three-year period with artificial acid mists of pH 2.5, 3.5, or 4.5 prepared with sulfuric acid or nitric acid. Treatments were made in the field twice weekly for eight weeks during each of the three growing seasons. Significant decreases in the percentage of plants flowering were noted in each year of the study in plants treated with sulfuric acid mist at pH 2.5. Significant decreases in flowering with sulfuric acid at pH 3.5 and in leaf number with sulfuric acid at pH 2.5 and 3.5 occurred in the third year of treatments as well. Some individual plants flowered in one, two, or three of the years, indicating that new floral primordia were being produced during the treatment period. Plants that flowered produced viable, germinable seeds. No effects of nitric acid mists were noted during the study period. Treatments with citrate buffer solutions (pH 6.2) used to determine if the plants were responding to sulfate independently of pH showed no significant differences for any of the measurements taken. The observed decreases in flowering are apparently a sulfuric acid effect and are not attributable to hydrogen ions or sulfate ions independently of each other. Experiments with plants that had visible floral buds indicate that plants aborted the floral structures in response to direct contact of buds with solution from the acid mists. The growth form of the plants enhances contact by causing pooling of the solutions on top of the developing buds in pockets formed by the basal leaves.  相似文献   

10.
1. A new technique for studying the progressive inactivation of thrombin is described. 2. Thrombin inactivation follows the kinetics of a first order reaction. 3. The rate constant of the inactivation reaction increases with temperature and pH (5.0 → 10.0), and also with the presence of crystalline trypsin, or serum. The rate varies for different thrombin preparations, even under the same experimental conditions. 4. The temperature characteristics of the reaction indicate that thrombin is associated with protein. 5. Thrombin preparations are most stable at pH 4 to 5, even when trypsin or serum is added. 6. The progressive inactivation is believed to be due to two mechanisms: (1) a major effect, thought to be the action of a "serum-tryptase," which is usually present in the thrombin preparations, and (2) a minor effect, probably attributable to denaturation of thrombin-protein. 7. Sources of the thrombinolytic factor (serum-tryptase) and its implications in the general theory and practical problems of blood coagulation and antithrombic action are briefly discussed.  相似文献   

11.
1. D-amino acid oxidase is inactivated by reaction with a low molar excess of dansyl chloride at pH 6.6, with complete inactivation accompanied by incorporation of 1.7 dansyl residues per mol of enzyme-bound flavin. The presence of benzoate, a potent competitive inhibitor, protects substantially against inactivation. Evidence is presented that the inactivation is due to dansylation of an active site histidine residue. Reactivation may be obtained by incubation with hydroxylamine. Diethylpyrocarbonate also inactivates the enzyme and modifies the labeling pattern with dansyl chloride. 2. Butanedione in the presence of borate reacts rapidly to inactivate D-amino acid oxidase. Reactivation is obtained spontaneously on removal of borate, implicating reaction of butanedione with an active site arginine residue. 3. Fluorodinitrobenzene appears to behave as an active site-directed reagent when mixed with D-amino acid oxidase at pH 7.4. Complete inactivation is obtained with incorporation of 2.0 dinitrophenyl residues per mol of enzyme-bound flavin. Again benzoate protects against inactivation; only one dinitrophenyl residue is incorporated in the presence of benzoate. The active site residue attacked by fluorodinitrobenzene has been identified as tyrosine.  相似文献   

12.
The acute effects of aqueous solutions of As, Cd, Cu, Pb, F, and Zn ions at concentrations from 0.01 to 100 micrograms per milliliter and solutions adjusted to pH 2 to 6 with nitric or sulfuric acid were studied with respect to acetylene reduction, net photosynthesis, respiration rate, and chlorophyll content in Vernal alfalfa (Medicago sativa L. cv. Vernal). The effects of the various treatments on acetylene reduction varied from no demonstrable effect by any concentration of F and 42% inhibition by 100 micrograms Pb2+ per milliliter, to 100% inhibition by 10 micrograms Cd2+ per milliliter and 100 micrograms per milliliter As, Cu2+, and Zn2+ ions. Zn2+ showed statistically significant inhibition of activity at 0.1 micrograms per milliliter. Acid treatments were not inhibitory above pH 2, at which pH nitric acid inhibited acetylene reduction activity more than did sulfuric acid. The inhibition of acetylene reduction by these ions was Zn2+ > Cd2+ > Cu2+ > AsO3 > Pb2+ > F. The sensitivity of acetylene reduction to the ions was roughly equal to the sensitivity of photosynthesis, respiration, and chlorophyll content when Pb2+ was applied, but was 1,000 times more sensitive to Zn2+. The relationship of the data to field conditions and industrial pollution is discussed.  相似文献   

13.
1. At equal hydrogen ion concentration the rate of pepsin digestion of gelatin, egg albumin, blood albumin, casein, and edestin is the same in solutions of hydrochloric, nitric, sulfuric, oxalic, citric, and phosphoric acids. Acetic acid diminishes the rate of digestion of all the proteins except gelatin. 2. There is no evidence of antagonistic salt action in the effect of acids on the pepsin digestion of proteins. 3. The state of aggregation of the protein, i.e. whether in solution or not, and the viscosity of the solution have no marked influence on the rate of digestion of the protein.  相似文献   

14.
近年来酸雨的酸性和频率越来越高,酸雨类型逐渐由硫酸型向硫酸-硝酸混合型及硝酸型转变。该研究以两年生马尾松、杉木、青冈和毛竹幼苗为试验材料,通过4个月的盆栽实验对幼苗进行硫酸型(SAR)、硝酸型(NAR)和混合型(MAR)酸雨及其各自3个酸雨浓度(pH 2.5、pH 3.5、pH 4.5)的处理,并以pH 5.7的蒸馏水为对照组,对植物的净光合速率、叶绿素含量、树种株高变化量以及植物根际土壤pH值和交换性盐基离子含量进行测定,以探究植物幼苗对模拟酸雨的敏感性及抗性特征,为酸雨受灾区的植被建设和抗酸树种的培育提供参考数据。结果表明:(1)不同浓度及类型酸雨在一定程度上能够抑制植物的净光合速率、阻碍叶绿素的合成,即酸雨浓度越高,植物净光合速率越低,叶绿素含量越少。(2)低浓度酸雨能够促进植物株高的增长,但随着酸雨浓度的增大,植物株高增长量受到严重抑制,且马尾松和青冈的表现最为明显。(3)植物根际土壤在低浓度酸雨胁迫下能够有效释放出盐基离子中和酸根离子从而降低酸雨的毒害,但随着酸雨浓度的增大,盐基离子含量不断衰减,土壤pH值逐渐减小。(4)杉木、马尾松、毛竹、青冈的平均隶属度值在不同酸雨类型作用下的表现不尽相同,总体上杉木对硫酸型和混合型酸雨的抗性最强,而毛竹能耐受硝酸型及混合型酸雨,青冈相比其他3种树种对酸雨的抗性最弱。研究发现,马尾松对硝酸型酸雨最敏感,且受胁迫的pH阈值为2.5~3.5,但对硫酸型酸雨表现出明显的抗性;杉木对3种类型酸雨的抗性较其他3种树种要强,毛竹抵抗硝酸型酸雨能力强于其他2种酸雨,而青冈对硝酸型酸雨的抵抗力强于其他2种酸雨且是抗酸能力最弱的树种,毛竹、杉木及青冈受酸雨胁迫的pH阈值为3.5~4.5;4种植物对酸雨的综合抵抗能力表现为杉木>毛竹>马尾松>青冈。  相似文献   

15.
The ferrous oxidation in xylenol orange (FOX) assay for hydroperoxides suffers from very narrow pH optimum in the range 1.7-1.8. Most published protocols recommend 25 mM sulfuric acid as the solvent, but this in practice does not ensure the maintenance of correct pH in the presence of materials such as samples of biological origin. Substitution of perchloric for the sulfuric acid resulted in a lowering of the optimum pH of the assay to 1.1, a decreased dependence of the absorbance of the ferric-xylenol orange complex on acid concentration and decreased sensitivity to added compounds. Molar absorption coefficients of hydrogen peroxide, cumene, and butyl hydroperoxides and of hydroperoxide groups generated in oxidized protein and lipids were determined and found to be higher than in sulfuric acid. The optimum concentration of perchloric acid proved to be 110 mM. The new assay was designated as PCA-FOX, to distinguish it from the FOX methods based on sulfuric acid.  相似文献   

16.
Plants of Acomastylis rossii and Bistorta vivipara were treated in the field with artificial acid mists prepared with sulfuric acid, nitric acid, or mixtures of equal parts of these at pH 2.5, 3.5, or 4.5. Highly significant reductions in flower production in A. rossii were noted with sulfuric acid treatments at pH 2.5 and in bulblet production in B. vivipara with nitric acid at pH 2.5 and 3.5, with sulfuric acid at pH 3.5, and with nitric-sulfuric acid mixtures at all pH's. These results apparently relate to the growth forms of the plants, which cause pooling of the acid solutions at their bases. Significant increases in flowering and in leaf number were noted for B. vivipara treated with sulfuric acid, possibly as a promotive effect of sulfate. No effects on vegetative growth were noted in A. rossii. The germinability of seeds (A. rossii) and bulblets (B. vivipara) also was not affected. Differential sensitivity of plant species to artificial acid mist implies that acid precipitation could cause a change in species composition of Colorado alpine plant communities.  相似文献   

17.
The esterification of Ribonuclease-A in methanol/0.1 M hydrochloric acid has been studied by measuring the decrease in the number of titratable groups of the protein and estimating the amount of methanol incorporated. Esterification of nearly five of the 11 free carboxyl groups of the protein resulted in almost complete inactivation of the enzyme. The initial products of esterification have been chromatographed on Amberlite columns, and five partially active methyl ester derivatives of Ribonuclease-A have been isolated. The dimethyl ester, the initial product of esterification with reduced catalytic activity, has the carboxyl groups of Glu-49 and Asp-53 modified. Even in the non-aqueous solvent, as in the native structure of the protein in aqueous solution, these carboxyl groups are the fast reacting ones. Subsquently, the esterification reaction appears to proceed preferentially at the C-terminal region of the molecule. Comparison of the reactivities of carboxyl groups of Ribonuclease-A in acidic methanol to that known in aqueous solutions (with carbodiimides) suggests that the structure of Ribonuclease-A in the non-aqueous solvent resembles, at least in part, the structure in aqueous environment.  相似文献   

18.
To react with peptides, nitric oxide.NO has to be activated by oxidation, or by coupling with superoxide (O.-2) thereby producing peroxynitrite. In the course of.NO oxidation,.NO2 free radicals and N2O3 may be formed. Using gamma-irradiation methods, we characterized the products formed by these nitrogen oxides with angiotensin II. Angiotensin II is specifically nitrated at its tyrosinyl residue by.NO2 or peroxynitrite. Equimolecular amounts of each reagent in K+/Pi solutions at pH 7.4 led to 56% and 5% nitration yields, respectively. Nitrogen oxides produced by autoxidation of.NO, as well as.NO2 under.NO, reacted only with the arginine residue, giving a mixture of peptides containing citrulline, a N-(hydroxylamino-cyanamido-) instead of guanido group, and a conjugated diene derived from an arginine side-chain. However, nitrosation reactions by N2O3 occurred only when the initial concentration of.NO2 was 10 times that able to react with angiotensin II. Thus, in this case.NO appears to protect against.NO2 action.  相似文献   

19.
The yield of nitric oxide from 1 mM sodium nitrite differs 200 times when the process was initiated by 10 mM sodium dithionite in the solution of 5 or 150 mM HEPES-buffer (pH 7.4). Dithionite acted both as a strong reductant and an agent that induced a local acidification of solutions without notable change in pH value. The amount of nitric oxide was estimated by the EPR method by measuring the incorporation of nitric oxide to water-soluble complexes of Fe with N-methyl-D-glucamine dithiocarbamate (MGD), which led to the formation of EPR-detectable mononitrosyl iron complexes with MGD (MNIC-MGD). Ten seconds after dithionite addition, the concentration of MNIC - MGD complexes reached 2 microM in 5 mM HEPES-buffer in contrast to 0.01 microM in 150 mM HEPES-buffer. The difference was suggested to be due to a higher life-time of zones with decreased pH values in a weaker weak buffer solution. The life-time was high enough to ensure the protonation of a part of nitrite. The resulting nitrous acid was decomposed to form nitric oxide. The difference in the formation of nitric oxide from nitrite was also observed in weak and strong buffer solutions in the presence of hemoglobin (0.3 mM) or serum albumin (0.5 mM). However, the ratios of nitric oxide yields in weak and strong buffer did not exceed 3-4 times. The increase in the formation of nitric oxide from nitrite was characteristic for the solutions containing both proteins. Large amounts of nitric oxide formed from nitrite was observed in mouse liver preparation subjected to freezing-thawing procedure followed by incubation in 150 mM HEPES-buffer (pH 7.4) and addition of dithionite. The proposition was made that the presence of zones with low pH value in cells and tissues can ensure the predominant operation of the acid mechanism formation of nitric oxide from nitrite. The contribution of the formation of nitric oxide from nitrite catalyzing with heme-containing proteins nitrite reductases can be minor one under these conditions.  相似文献   

20.
The interaction of trypsin with an acid polysaccharide, heparin, at pH 4.2 and 8.0 is studied. Heparin is found to destabilize the enzyme under condition of both autolytic denaturation (pH 8.0) and thermoinactivation (pH 4.2). Data on trypsin inactivation kinetics suggest that the stage of forming molecular complexes with different contents of trypsin and heparin precedes the stage of the enzyme denaturation. Maximal trypsin inactivation rate takes place under equimolar enzyme:heparin ration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号