首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An iron porphycene containing two propionate side chains at the 12th and 17th beta-pyrrolic positions of the porphycene ring was synthesized and incorporated into sperm whale apomyoglobin in order to investigate the O(2) and CO binding properties of the reconstituted ferrous myoglobin. The protein showed a slower O(2) dissociation rate by 1/20, compared to the native myoglobin, whereas the CO dissociation rates were found to be almost the same. This tendency is similar to the result of a previous study on the reconstituted myoglobin with a porphycene having the propionates at the 13th and 16th beta-pyrrolic positions. However, the present myoglobin showed a faster O(2) dissociation than the previously studied myoglobin. This finding suggests that the position of the two propionates as well as the symmetry of the porphycene framework is an important factor for obtaining a stable oxygenated iron porphycene myoglobin.  相似文献   

2.
Site-directed mutagenesis studies have confirmed that the distal histidine in myoglobin stabilizes bound O2 by hydrogen bonding and have suggested that it is the polar character of the imidazole side chain rather than its size that limits the rate of ligand entry into the protein. We constructed an isosteric Val68 to Thr replacement in pig myoglobin (i) to investigate whether the O2 affinity could be increased by the introduction of a second hydrogen-bonding group into the distal heme pocket and (ii) to examine the influence of polarity on the ligand binding rates more rigorously. The 1.9-A crystal structure of Thr68 aquometmyoglobin confirms that the mutant and wild-type proteins are essentially isostructural and reveals that the beta-OH group of Thr68 is in a position to form hydrogen-bonding interactions both with the coordinated water molecule and with the main chain greater than C=O of residue 64. The rate of azide binding to the ferric form of the Thr68 mutant was 60-fold lower than that for the wild-type protein, consistent with the proposed stabilization of the coordinated water molecule. However, bound O2 is destabilized in the ferrous form of the mutant protein. The observed 17-fold lowering of the O2 affinity may be a consequence of the hydrogen-bonding interaction made between the Thr68 beta-OH group and the carbonyl oxygen of residue 64. Overall association rate constants for O2, NO, and alkyl isocyanide binding to ferrous pig myoglobin were 3-10-fold lower for the mutant compared to the wild-type protein, whereas that for CO binding was little affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
M Sono 《Biochemistry》1990,29(6):1451-1460
The binding of a number of ligands to the heme protein indolamine 2,3-dioxygenase has been examined with UV-visible absorption and with natural and magnetic circular dichroism spectroscopy. Relatively large ligands (e.g., norharman) which do not readily form complexes with myoglobin and horseradish peroxidase (HRP) can bind to the dioxygenase. Except for only a few cases (e.g., 4-phenylimidazole) for the ferric dioxygenase, a direct competition for the enzyme rarely occurs between the substrate L-tryptophan (Trp) and the ligands examined. L-Trp and small heme ligands (CN-,N3-,F-) markedly enhance the affinity of each other for the ferric enzyme in a reciprocal manner, exhibiting positive cooperativity. For the ferrous enzyme, L-Trp exerts negative cooperativity with some ligands such as imidazoles, alkyl isocyanides, and CO binding to the enzyme. This likely reflects the proximity of the Trp binding site to the heme iron. Other indolamine substrates also exert similar but smaller cooperative effects on the binding of azide or ethyl isocyanide. The pH dependence of the ligand affinity of the dioxygenase is similar to that of myoglobin rather than that of HRP. These results suggest that indolamine 2,3-dioxygenase has the active-site heme pocket whose environmental structure is similar to, but whose size is considerably larger than, that of myoglobin, a typical O2-binding heme protein. Although the L-Trp affinity of the ferric cyanide and ferrous CO enzyme varies only slightly between pH 5.5 and 9.5, the unligated ferric and ferrous enzymes have considerably higher affinity for L-Trp at alkaline pH than at acidic pH. L-Trp binding to the ferrous dioxygenase is affected by an ionizable residue with a pKa value of 7.3.  相似文献   

4.
Cytochrome P-450 was solubilized from phenobarbital induced rabbit liver and purified by affinity chromatography. The longitudinal proton magnetic relaxation rates of this ferric, low-spin sample (as confirmed by ESR) in 20% glycerol aqueous solution are very large compared with low-spin methaemoglobin and myoglobin derivatives. Similarly high rates were measured in a deuterated solution using the aliphatic protons of glycerol as stereochemical markers, which strongly suggests that the haem iron in cytochrome P-450 is much more accessible to the solvent than in harmoglobin or myoglobin. Type I substate (Spasman) produced small but significant increases in NMR rates both in the H2O and in the 2H2O solution, while binding of aniline (Type II substrate) doubled the rates.  相似文献   

5.
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.  相似文献   

6.
57Fe-enriched complexes of hemoglobin and myoglobin with CO and O2 were photodissociated at 4.2 degrees K, and the resulting spectra were compared with those of the deoxy forms. Differences in both quadrupole splitting and isomer shift were noted for each protein, the photoproducts having smaller isomer shift and larger quadrupole splitting than the deoxy forms. The photoproducts of HbCO and HbO2 had narrow absorption lines, indicating a well-defined iron environment. The corresponding myoglobin species had broader absorption lines, as did both deoxy forms. The weak absorption lines of photodissociated NO complexes appeared to be wide, possibly indicating magnetic interaction with the unpaired electron of the nearby NO.  相似文献   

7.
The protein contribution to the relative binding affinity of the ligands CO and O2 toward myoglobin (Mb) has been simulated using free energy perturbation calculations. The tautomers of the His E7 residue are different for the oxymyoglobin (MbO2) and carboxymyoglobin (MbCO) systems. This was modeled by performing two-step calculations that mutate the ligand and mutate the His E7 tautomers in separate steps. Differences in hydrogen bonding to the O2 and CO ligands were incorporated into the model. The O2 complex was calculated to be 2-3 kcal/mol more stable than the corresponding CO complex when compared to the same difference in an isolated heme control. This value agrees well with the experimental value of 2.0 kcal/mol. In qualitative agreement with experiments, the Fe-C-O bond is found to be bent (theta = 159.8 degrees) with a small tilt (theta = 6.2 degrees). The contributions made by each of the 29 residues--within the 9.0-A radius of the iron atom--to the free energy difference are separated into van der Waals and electrostatic contributions; the latter contributions are dominant. Aside from the proximal histidine and the heme group, the residues having the largest difference in free energy in mutating MbO2-->MbCO are His E7, Phe CD1, Phe CD4, Val E11, and Thr E10.  相似文献   

8.
Overall association and dissociation rate constants were measured at 20 degrees C for O2, CO, and alkyl isocyanide binding to position 45 (CD3) mutants of pig and sperm whale myoglobins and to sperm whale myoglobin reconstituted with protoheme IX dimethyl ester. In pig myoglobin, Lys45(CD3) was replaced with Arg, His, Ser, and Glu; in sperm whale myoglobin, Arg45(CD3) was replaced with Ser and Gly. Intramolecular rebinding of NO, O2, and methyl isocyanide to Arg45, Ser45, Glu45, and Lys45(native) pig myoglobins was measured following 35-ps and 17-ns excitation pulses. The shorter, picosecond laser flash was used to examine ligand recombination from photochemically produced contact pairs, and the longer, nanosecond flash was used to measure the rebinding of ligands farther removed from the iron atom. Mutations at position 45 or esterification of the heme did not change significantly (less than or equal to 2-fold) the overall association rate constants for NO, CO, and O2 binding at room temperature. These data demonstrate unequivocally that Lys(Arg)45 makes little contribution to the outer kinetic barrier for the entry of diatomic gases into the distal pocket of myoglobin, a result that contradicts a variety of previous structural and theoretical interpretations. However, the rates of geminate recombination of NO and O2 and the affinity of myoglobin for O2 were dependent upon the basicity of residue 45. The series of substitutions Arg45, Lys45, Ser45, and Glu45 in pig myoglobin led to a 3-fold decrease in the initial rate for the intramolecular, picosecond rebinding of NO and 4-fold decrease in the geminate rate constant for the nanosecond rebinding of O2. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Reaction of horse myoglobin with H2O2 oxidizes the iron to the ferryl (Fe(IV) = O) state and produces a protein radical that is rapidly dissipated by poorly understood mechanisms. As reported here, the reaction with H2O2 results in covalent binding of up to 18% of the prosthetic heme group to the protein. The chromophore of the protein-bound prosthetic group is very similar to that of heme itself. High performance liquid chromatography of tryptic digests indicates that the formation of heme-bound peptides is associated with disappearance of the peptide with the sequence YLE-FISDAIIHVLHSK corresponding to residues 103-118 of horse myoglobin. Amino acid analysis, terminal amino acid sequencing, and liquid secondary ion mass spectrometry establish that the heme is primarily attached to this peptide. The heme appears to be bound to the tyrosine residue because the tyrosine is the only amino acid that disappears from the amino acid analysis. The mass spectrometric data indicates that the heme-peptide is formed without addition or loss of an oxygen or other major structural fragment. The site of attachment to the heme group has not been unambiguously determined, but the heme vinyl groups are not essential for the reaction because equal cross-linking is observed in H2O2-treated mesoheme-reconstituted myoglobin. The results are most consistent with binding of tyrosine 103 to a meso-carbon of the prosthetic heme group.  相似文献   

10.
Cobalt myoglobins (Aplysia) have been reconstituted from apo-myoglobin (Aplysia) and proto-, meso-, and deutero-cobalt porphyrins. Each of them showed the 30--60 times lower oxygen affinity than those of the corresponding cobalt myoglobins (Sperm whale). Kinetic investigation of their oxygenation by the temperature-junp relaxation technique showed that the low oxygen affinity of cobalt myoglobin (Aplysia) is due to a large dissociation rate constant. the electron paramagnetic resonance (EPR) spectrum of oxy cobalt myoglobin (Aplysia) is affected by the replacement of H2O with D2O, suggesting a possible interaction between the bound oxygen and the neighboring hydrogen atom. A low temperature photodissociation study showed that the product of photolysis of oxy cobalt myoglobin (Aplysia) gives an EPR spectrum different from that of the deoxy-cobalt myoglobin (Aplysia) and from that of the photolysed form of oxy-cobalt myogloin (Sperm whale). These observations suggest that in oxy-cobalt myoglobin (Aplysia) the bound oxygen might interact with amino acid adjacent to it, but the interaction is weaker than that in oxy cobalt myoglobin (Sperm whale).  相似文献   

11.
We carried out the flash photolysis of oxy complexes of sperm whale myoglobin, cobalt-substituted sperm whale myoglobin, and Aplysia myoglobin. When the optical absorption spectral changes associated with the O2 rebinding were monitored on the nanosecond to millisecond time scale, we found that the transient spectra of the O2 photoproduct of sperm whale myoglobin were significantly different from the static spectra of deoxy form. This was sharply contrasted with the observations that the spectra of the CO photoproduct of sperm whale myoglobin and of the O2 photoproducts of cobalt-substituted sperm whale myoglobin and Aplysia myoglobin are identical to the corresponding spectra of their deoxy forms. These results led us to suggest the presence of a fairly stable transient species in the O2 photodissociation from the oxy complex of sperm whale myoglobin, which has a protein structure different from the deoxy form. We denoted the O2 photo-product to be Mb*. In the time-resolved resonance Raman measurements, the nu Fe-His mode of Mb* gave the same value as that of the deoxy form, indicating that the difference in the optical absorption spectra is possibly due to the structural difference at the heme distal side rather than those of the proximal side. The structure of Mb* is discussed in relation to the dynamic motion of myoglobin in the O2 entry to or exit from the heme pocket. Comparing the structural characteristics of several myoglobins employed, we suggested that the formation of Mb* relates to the following two factors: a hydrogen bonding of O2 with the distal histidine, and the movement of iron upon the ligation of O2.  相似文献   

12.
The oxidation of the heme iron of metmyoglobin by H2O2 yields an oxo ferryl complex (FeIV = O), similar to Compound II of peroxidases, as well as a protein radical; this high oxidation state of myoglobin is known as ferrylmyoglobin. The interaction of Trolox, a water-soluble vitamin E analog, with ferrylmyoglobin entailed two sequential one-electron oxidations of the phenolic antioxidant with intermediate formation of a phenoxyl radical and accumulation of a quinone end product. These oxidation reactions were linked to individual reductions of ferrylmyoglobin to metmyoglobin, as indicated by the value of the relationship [metmyoglobin]formed/[Trolox]consumed: 1.92 +/- 0.28. The Trolox-mediated reduction of ferrylmyoglobin to metmyoglobin could proceed directly, i.e., electron transfer from the phenolic-OH group in Trolox to the oxoferryl moiety, or indirectly, i.e., sequential electron transfer from Trolox to a protein radical to the oxoferryl moiety. The former mechanism is supported by the finding that the high oxidation heme iron is reduced under conditions where the tyrosyl residues are blocked by o-acetylation and when hemin is substituted for myoglobin. The latter mechanism is consistent with the following observations: (a) the EPR signal ascribed to the protein radical is suppressed by Trolox, with the concomitant appearance of the EPR spectrum of the Trolox phenoxyl radical and (b) the rate of ferrylmyoglobin reduction by Trolox is decreased with increasing number of tyrosyl residues in the proteins of horse myoglobin (titrated by o-acetylation) and sperm whale myoglobin. The apparent discrepancy between these observations can be reconciled by considering that both electrophilic centers in ferrylmyoglobin--the oxoferryl heme moiety and the protein radical--function independently of each other and that recovery of ferrylmyoglobin by Trolox could be effected through the tyrosyl residues, albeit at slower rates. The mechanistic aspects of these results are discussed in terms of the two main redox transitions in the myoglobin molecule encompassing valence changes of the heme iron and electron transfer of the tyrosyl residue in the protein and linked to the two sequential one-electron oxidations of Trolox.  相似文献   

13.
Combined quantum chemical and molecular mechanics geometry optimisations have been performed on myoglobin without or with O(2) or CO bound to the haem group. The results show that the distal histidine residue is protonated on the N(epsilon 2) atom and forms a hydrogen bond to the haem ligand both in the O(2) and the CO complexes. We have also re-refined the crystal structure of CO[bond]myoglobin by a combined quantum chemical and crystallographic refinement. Thereby, we probably obtain the most accurate available structure of the active site of this complex, showing a Fe[bond]C[bond]O angle of 171 degrees, and Fe[bond]C and C[bond]O bond lengths of 170-171 and 116-117 pm. The resulting structures have been used to calculate the strength of the hydrogen bond between the distal histidine residue and O(2) or CO in the protein. This amounts to 31-33 kJ/mol for O(2) and 2-3 kJ/mol for CO. The difference in hydrogen-bond strength is 21-22 kJ/mol when corrected for entropy effects. This is slightly larger than the observed discrimination between O(2) or CO by myoglobin, 17 kJ/mol. We have also estimated the strain of the active site inside the protein. It is 2-4 kJ/mol larger for the O(2) complex than for the CO complex, independent of which crystal structure the calculations are based on. Together, these results clearly show that myoglobin discriminates between O(2) and CO mainly by electrostatic interactions, rather than by steric strain.  相似文献   

14.
Sperm whale myoglobin mutants were constructed using site-directed mutagenesis to replace the highly conserved distal histidine residue (His(E7)-64). His-64 was substituted with Gly, Val, Phe, Cys, Met, Lys, Arg, Asp, Thr, and Tyr, and all 10 mutant proteins expressed to approximately 10% of the total soluble cell protein in Escherichia coli as heme containing myoglobin. With the exception of His-64----Tyr, which did not form a stable oxygen (O2) complex, all mutant proteins could be reduced and bound O2 and carbon monoxide (CO) reversibly. However, removal of the distal histidine increased the rate of autooxidation 40-350-fold. The His-64----Gly, Val, Phe, Met, and Arg mutants all showed markedly increased O2 dissociation rate constants which were approximately 50-1500-fold higher than those for wild-type myoglobin and increased O2 association rate constants which were approximately 5-15-fold higher than those for the native protein. All mutants studied (except His-64----Tyr) showed approximately 10-fold increased CO association rates and relatively unchanged CO dissociation rates. These altered O2 and CO association and dissociation rate constants resulted in 3-14-fold increased CO affinities, 10-200-fold decreased O2 affinities, and 50-380-fold greater M (KCO/KO2) values for the mutants compared to the wild-type protein. Thus, the distal histidine of myoglobin discriminates between CO and O2 binding by both sterically hindering bound CO and stabilizing bound O2 through hydrogen bonding. The increased autooxidation rates observed for the mutants appear to be due to a decrease in oxygen affinity and an increase in solvent anion accessibility to the distal pocket.  相似文献   

15.
Laser flash photolysis technique was used to study zinc and cadmium ion effects on bimolecular and nanosecond geminate molecular oxygen (O(2)) rebinding to horse heart myoglobin. Time courses for geminate recombination are analyzed in terms of a three-step, side path model. In the presence of metal ions, the greatest changes are observed in the rate constant of the O(2) rebinding from within the primary docking site and the rate constant of the O(2) migration from the primary site to the secondary xenon docking sites. The study revealed that modulation of the myoglobin affinity for O(2) by zinc and cadmium occurs at the level of the innermost barrier controlling O(2) rebinding from within the primary docking site. Sets of the calculated rate constants provide a basis for an interpretation of metal ion effects on the myoglobin structure. Overall, the results demonstrate that the metal ions binding to myoglobin gives rise to an increase in the population of the "open" distal pocket protein conformation.  相似文献   

16.
Functional effects of heme orientational disorder in sperm whale myoglobin   总被引:2,自引:0,他引:2  
The optical absorption and ligand binding properties of newly reconstituted sperm whale myoglobin were examined systematically at pH 8, 20 degrees C. The conventional absorbance and magnetic circular dichroism spectra of freshly reconstituted samples were identical to those of the native protein. In contrast, reconstituted azide or CO myoglobin initially exhibited less circular dichroism in the Soret wavelength region than native myoglobin. These data support the theory proposed by La Mar and co-workers (La Mar, G. N., Davis, N. L., Parish, D. W., and Smith, R. M. (1983) J. Mol. Biol. 168, 887-896) that protoheme inserts into apomyoglobin in two distinct orientations. The equilibrium and kinetic parameters for O2 and CO binding to newly reconstituted myoglobin were observed to be identical to those of the native protein. Thus, the orientation of the heme group has no effect on the physiological properties of myoglobin. This result is in disagreement with the preliminary report of Livingston et al. (Livingston, D. J., Davis, N. L., La Mar, G. N., and Brown, W. D. (1984) J. Am. Chem. Soc. 106, 3025-3026) which suggested that the abnormal heme conformation exhibited a 10-fold greater affinity and association rate constant for O2 binding. Significant kinetic heterogeneity was observed only for long-chain isonitrile binding to newly reconstituted myoglobin, and even in these cases, the rate constants for the abnormal and normal heme conformations differed by less than a factor of 4.  相似文献   

17.
Spectrophotometric titration of ferric octaethylporphyrin (OEP) with apomyoglobin revealed their 1:1 complex formation. Proton NMR spectrum of the OEP-reconstituted deoxymyoglobin exhibits an exchangeable peak from the proximal F8 histidine at 78.5 ppm, indicating the incorporation of iron OEP into the heme cavity to form the Fe-N(His-F8) bond. OEP metmyoglobin without external ligand has an iron-bound water that deprotonates above pH 7.8. Affinities of the aquometmyoglobin for several ionic ligands were comparable with those of native metmyoglobin. Deoxy OEP myoglobin at 25 degrees C reversibly binds oxygen with an affinity of P50 = 0.8 mm Hg, which is similar to that of native protein. These results indicate that iron OEP serves as a prosthetic group for myoglobin with normal function, despite the significant structural and electronic difference between OEP and protoporphyrin. The unexpected functional similarity between native and OEP myoglobins was interpreted in terms of a structural perturbation at the heme distal site caused by introduction of bulky OEP into the heme pocket.  相似文献   

18.
Globin-coupled sensors (GCSs) are multiple-domain transducers, consisting of a regulatory globin-like heme-binding domain and a linked transducer domain(s). GCSs have been described in both Archaea and bacteria. They are generally assumed to bind O(2) (and perhaps other gaseous ligands) and to transmit a conformational change signal through the transducer domain in response to fluctuating O(2) levels. In this study, the heme-binding domain, AvGReg178, and the full protein, AvGReg of the Azotobacter vinelandii GCS, were cloned, expressed, and purified. After purification, the heme iron of AvGReg178 was found to bind O(2). This form was stable over many hours. In contrast, the predominant presence of a bis-histidine coordinate heme in ferric AvGReg was revealed. Differences in the heme pocket structure were also observed for the deoxygenated ferrous state of these proteins. The spectra showed that the deoxygenated ferrous derivatives of AvGReg178 and AvGReg are characterized by a penta-coordinate and hexa-coordinate heme iron, respectively. O(2) binding isotherms indicate that AvGReg178 and AvGReg show a high affinity for O(2) with P(50) values at 20 degrees C of 0.04 and 0.15 torr, respectively. Kinetics of CO binding indicate that AvGReg178 carbonylation conforms to a monophasic process, comparable with that of myoglobin, whereas AvGReg carbonylation conforms to a three-phasic reaction, as observed for several proteins with bis-histidine heme iron coordination. Besides sensing ligands, in vitro data suggest that AvGReg(178) may have a role in O(2)-mediated NO-detoxification, yielding metAvGReg(178) and nitrate.  相似文献   

19.
Mutants of sperm whale myoglobin were constructed at position 29 (B10 in helix notation) to examine the effects of distal pocket size on the rates of ligand binding and autooxidation. Leu29 was replaced with Ala, Val, and Phe using the synthetic gene and Escherichia coli expression system of Springer and Sligar (Springer, B. A., and Sligar, S. G. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 8961-8965). Structures of the ferric forms of Val29 and Phe29, and the oxy form of Phe29 myoglobin were determined to 1.7 A by x-ray crystallography. The ferric mutant proteins are remarkably isomorphous with the wild type protein except in the immediate vicinity of residue 29. Thus, the protein structure in the distal pocket of myoglobin can accommodate either a large "hole" (i.e. Ala or Val) or a large side chain (i.e. Phe) at position 29 without perturbation of tertiary structure. Phe29 oxymyoglobin is also identical to the native oxy protein in terms of overall structure and interactions between the bound O2 and His64, Val68, Phe43, and Ile107. The distance between the nearest side chain atom of residue 29 and the second atom of the bound oxygen molecule is 3.2 A in the Phe29 protein and 4.9 A in native myoglobin. The equilibrium constants for O2 binding to Ala29, Val29, and Leu29 (native) myoglobin are the same, approximately 1.0 x 10(6) M-1 at 20 degrees C, whereas that for the Phe29 protein is markedly greater, 15 x 10(6) M-1. This increase in affinity is due primarily to a 10-fold decrease in the O2 dissociation rate constant for the Phe29 mutant and appears to be the result of stabilizing interactions between the negative portion of the bound O2 dipole and the partially positive edge of the phenyl ring. Increasing the size of residue 29 causes large decreases in the rate of autooxidation of myoglobin: k(ox) = 0.24, 0.23, 0.055, and 0.005 h-1 for Ala29, Val29, Leu29 (native), and Phe29 myoglobin, respectively, in air at 37 degrees C. Thus, the Leu29----Phe mutation produces a reduced protein that is remarkably stable and is expressed in E. coli as 100% MbO2. The selective pressure to conserve Leu29 at the B10 position probably represents a compromise between reducing the rate of autooxidation and maintaining a large enough O2 dissociation rate constant to allow rapid oxygen release during respiration.  相似文献   

20.
Teleost myoglobin (Mb) proteins from four fish species inhabiting different temperature environments were used to investigate the relationship between protein function and thermal stability. Mb was isolated from yellowfin tuna (homeothermal warm), mackerel (eurythermal warm), and the Antarctic teleost Notothenia coriiceps (stenothermal cold). Zebrafish (stenothermal tropical) myoglobin was expressed from cloned cDNA. These proteins differed in oxygen affinity, as measured by O2 dissociation rates and P50 values, and thermal stability as measured by autooxidation rates. Mackerel Mb had the highest P50 value at 25 degrees C (3.7 mmHg), corresponding to the lowest O2 affinity, followed by zebrafish (1.0 mmHg), yellowfin tuna (1.0 mmHg), and N. coriiceps (0.6 mmHg). Oxygen dissociation rates and Arrhenius plots were similar between all teleost species in this study, with the exception of mackerel myoglobin, which was two-fold faster at all temperatures tested. Myoglobin from the Antarctic teleost had the highest autooxidation rate (0.44 h(-1)), followed by mackerel (0.26 h(-1)), zebrafish (0.22 h(-1)), and yellowfin tuna (0.088 h(-1)). Primary structural analysis revealed residue differences distributed throughout the polypeptide sequences, making it difficult to identify, which, if any, residues contribute to structural flexibility. However, analysis of molecular dynamics trajectories indicates that Mb from the eurythermal mackerel is predicted to be the most flexible protein within the D loop and FG turn. At the same time, it has the lowest O2 affinity and the highest O2 dissociation rates when compared to myoglobins from teleosts that appear to be less flexible in our dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号