首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton nuclear magnetic resonance spectroscopy has been used to investigate the rates and mechanism of exchange with deuterium of the proximal histidyl imidazole labile ring proton in deoxy and oxy-hemoglobin A. The resolved signals for the two subunits indicate dynamic heterogeneity, with the exchange rate always faster in the alpha than the beta subunits, suggesting a lower dynamic stability for the alpha subunit. The activation energy for the exchange in both subunits (approximately 25 kcal; 1 cal = 4.184 J) indicates that exchange proceeds via an intermediate far from denaturation or global unfolding. The pH profiles for both hemoglobin states reflect the EX2 mechanism for both subunits. While the base catalysis expected for an iron-bound imidazole is observed in all cases, there are important differences in both rates and mechanisms between the subunits. In deoxy-hemoglobin, both base-catalyzed and water-assisted exchange contribute to the alpha subunit, but only the former to the beta subunit. For oxy-hemoglobin, the base-catalysis is retained for both subunits, but the slope is considerably less for the alpha relative to the beta subunit. Thus the two subunits in the two states of hemoglobin differ both in mechanisms and in the inherent dynamic stability reflected in any one mechanism. The relationships of the proximal histidyl ring NH exchange rates to previously characterized subsets of allosterically responsive protons in hemoglobin A is briefly discussed.  相似文献   

2.
K H Han  G N La Mar  K Nagai 《Biochemistry》1989,28(5):2169-2170
Proton nuclear magnetic resonance spectroscopy has been utilized to investigate the rates of exchange with deuterium of the proximal histidyl ring protons in a series of chemically modified and mutated forms of Hb A. Differences in rates of exchange are related to differences in the stability of the deformed or partially unfolded intermediates from which exchange with bulk solvent takes place. Each modified/mutated Hb exhibited kinetic subunit heterogeneity in the reduced ferrous state, with the alpha subunit exhibiting faster exchange than the beta subunit. Modification or mutation resulted in significant increases in the His F8 ring NH exchange rates primarily for the affected subunit and only if the modification/mutation occurs at the allosterically important alpha 1 beta 2 subunit interface. Moreover, this enhancement in exchange rate is observed primarily in that quaternary state of the modified/mutated Hb in which the modified/substituted residue makes the intersubunit contact. This confirms the importance of allosteric constraints in determining the dynamic properties of the heme pocket. Using modified or mutated Hbs that can switch between the alternate quaternary states within a given ligation state or ligate within a given quaternary state, we show that the major portion of the enhanced exchange rate in R-state oxy Hb relative to T-state deoxy Hb originates from the quaternary switch rather than from ligation. However, solely ligation effects are not negligible. The exchange rates of the His F8 ring labile protons increase dramatically upon oxidizing the iron to the ferric state, and both the subunit kinetic heterogeneity and the allosteric sensitivity to the quaternary state are essentially abolished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The sequential resonance assignment of the 1H NMR spectrum of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata is presented. This is carried out with two-dimensional NMR techniques to identify through-bond and through-space (less than 5 A) connectivities. Added spectral complexity arises from the fact that the sample is an approximately 1:1 mixture of two BDS-I isoproteins, (Leu-18)-BDS-I and (Phe-18)-BDS-I. Complete assignments, however, are obtained, largely due to the increased resolution and sensitivity afforded at 600 MHz. In addition, the stereospecific assignment of a large number of beta-methylene protons is achieved from an analysis of the pattern of 3J alpha beta coupling constants and the relative magnitudes of intraresidue NOEs involving the NH, C alpha H, and C beta H protons. Regular secondary structure elements are deduced from a qualitative interpretation of the nuclear Overhauser enhancement, 3JHN alpha coupling constant, and amide NH exchange data. A triple-stranded antiparallel beta-sheet is found to be related to that found in partially homologous sea anemone polypeptide toxins.  相似文献   

4.
NMR relaxation measurements of 15N spin-lattice relaxation rate (R(1)), spin-spin relaxation rate (R(2)), and heteronuclear nuclear Overhauser effect (NOE) have been carried out at 11.7T and 14.1T as a function of temperature for the side-chains of the tryptophan residues of 15N-labeled and/or (2H,15N)-labeled recombinant human normal adult hemoglobin (Hb A) and three recombinant mutant hemoglobins, rHb Kempsey (betaD99N), rHb (alphaY42D/betaD99N), and rHb (alphaV96W), in the carbonmonoxy and the deoxy forms as well as in the presence and in the absence of an allosteric effector, inositol hexaphosphate (IHP). There are three Trp residues (alpha14, beta15, and beta37) in Hb A for each alphabeta dimer. These Trp residues are located in important regions of the Hb molecule, i.e. alpha14Trp and beta15Trp are located in the alpha(1)beta(1) subunit interface and beta37Trp is located in the alpha(1)beta(2) subunit interface. The relaxation experiments show that amino acid substitutions in the alpha(1)beta(2) subunit interface can alter the dynamics of beta37Trp. The transverse relaxation rate (R(2)) for beta37Trp can serve as a marker for the dynamics of the alpha(1)beta(2) subunit interface. The relaxation parameters of deoxy-rHb Kemspey (betaD99N), which is a naturally occurring abnormal human hemoglobin with high oxygen affinity and very low cooperativity, are quite different from those of deoxy-Hb A, even in the presence of IHP. The relaxation parameters for rHb (alphaY42D/betaD99N), which is a compensatory mutant of rHb Kempsey, are more similar to those of Hb A. In addition, TROSY-CPMG experiments have been used to investigate conformational exchange in the Trp residues of Hb A and the three mutant rHbs. Experimental results indicate that the side-chain of beta37Trp is involved in a relatively slow conformational exchange on the micro- to millisecond time-scale under certain experimental conditions. The present results provide new dynamic insights into the structure-function relationship in hemoglobin.  相似文献   

5.
A study of the regular secondary structure elements of recombinant human interleukin-1 beta has been carried out using NMR spectroscopy. Using a randomly 15N labeled sample, a number of heteronuclear three- and two-dimensional NMR experiments have been performed, which have enabled a complete analysis of short-, medium-, and long-range NOEs between protons of the polypeptide backbone, based on the sequence-specific resonance assignments that have been reported previously [Driscoll, P. C., Clore, G. M., Marion, D., Wingfield, P. T., & Gronenborn, A. M. (1990) Biochemistry 29, 3542-3556]. In addition, accurate measurements of a large number of 3JHN alpha coupling constants have been carried out by two-dimensional heteronuclear multiple-quantum-coherence-J spectroscopy. Amide NH solvent exchange rates have been measured by following the time dependence of the 15N-1H correlation spectrum of interleukin-1 beta on dissolving the protein in D2O solution. Analysis of these data indicate that the structure of interleukin-1 beta consists of 12 extended beta-strands aligned in a single extended network of antiparallel beta-sheet structure that in part folds into a skewed six-stranded beta-barrel. In the overall structure the beta-strands are connected by tight turns, short loops, and long loops in a manner that displays approximate pseudo-three-fold symmetry. The secondary structure analysis is discussed in the light of the unrefined X-ray structure of interleukin-1 beta at 3-A resolution [Priestle, J. P., Sch?r, H.-P., & Grütter, M. G. (1988) EMBO J. 7, 339-343], as well as biological activity data. Discernible differences between the two studies are highlighted. Finally, we have discovered conformational heterogeneity in the structure of interleukin-1 beta, which is characterized by an exchange rate that is slow on the NMR chemical shift time scale.  相似文献   

6.
The rate of the H-D exchange of the peptide NH atoms of the isolated alpha and beta subunits of human Hb were studied at the pH range 5.5-9.0 and 20 degrees C by the IR spectroscopy. The factor retardation of the exchange rate of subunits -P in the range -10(2)-10(7). In comparison with tetramer Hb the probability of local fluctuations (1/P) is increased to a slightly greater extent for the monomeric alpha subunits then for the tetramer beta subunits. Unlike Hb oxygenation of subunits does not influence on the probability of the local fluctuations and subunits have no the pH-dependent change of the value 1/P observable for the ligand Hb. The possible mechanisms of the overall intensification of the local fluctuations upon the splitting of the Hb tetrameric contacts between subunits are discussed with the inviting of the structural crystallographic data.  相似文献   

7.
The conformations of enzyme-bound pentapeptide (Arg-Arg-Ala-Ser-Leu) and heptapeptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) substrates of protein kinase have been studied by NMR in quaternary complexes of the type (Formula: see text). Paramagnetic effects of Mn2+ bound at the inhibitory site of the catalytic subunit on the longitudinal relaxation rates of backbone Ca protons, as well as on side-chain protons of the bound pentapeptide and heptapeptide substrates, have been used to determine Mn2+ to proton distances which range from 8.2 to 12.4 A. A combination of the paramagnetic probe-T1 method with the Redfield 2-1-4-1-2 pulse sequence for suppression of the water signal has been used to measure distances from Mn2+ to all of the backbone amide (NH) protons of the bound pentapeptide and heptapeptide substrates, which range from 6.8 to 11.1 A. Paramagnetic effects on the transverse relaxation rates yield rate constants for peptide exchange, indicating that the complexes studied by NMR dissociate rapidly enough to participate in catalysis. Model-building studies based on the Mn2+-proton distances, as well as on previously determined distances from Cr3+-AMPPCP to side-chain protons [Granot, J., Mildvan, A.S., Bramson, H. N., & Kaiser, E. T. (1981) Biochemistry 20, 602], rule out alpha-helical, beta-sheet, beta-bulge, and all possible beta-turn conformations within the bound pentapeptide and heptapeptide substrates. The distances are fit only by extended coil conformations for the bound peptide substrates with a minor difference between the pentapeptides and heptapeptides in the phi torsional angle at Arg3C alpha and in psi at Arg2C alpha. An extended coil conformation, which minimizes the number of interactions within the substrate, would facilitate enzyme-substrate interaction and could thereby contribute to the specificity of protein kinase.  相似文献   

8.
The presence and location of bound internal water molecules in the solution structure of interleukin 1 beta have been investigated by means of three-dimensional 1H rotating-frame Overhauser 1H-15N multiple quantum coherence spectroscopy (ROESY-HMQC). In this experiment through-space rotating-frame Overhauser (ROE) interactions between NH protons and bound water separated by less than or equal to 3.5 A are clearly distinguished from chemical exchange effects, as the cross-peaks for these two processes are of opposite sign. The identification of ROEs between NH protons and water is rendered simple by spreading out the spectrum into a third dimension according to the 15N chemical shift of the directly bonded nitrogen atoms. By this means, the problems that prevent, in all but a very few limited cases, the interpretation, identification, and assignment of ROE peaks between NH protons and water in a 2D 1H-1H ROESY spectrum of a large protein such as interleukin 1 beta, namely, extensive NH chemical shift degeneracy and ROE peaks obscured by much stronger chemical exchange peaks, are completely circumvented. We demonstrate the existence of 15 NH protons that are close to bound water molecules. From an examination of the crystal structure of interleukin 1 beta [Finzel, B. C., Clancy, L. L., Holland, D. R., Muchmore, S. W., Watenpaugh, K. D., & Einspahr, H. M. (1989) J. Mol. Biol. 209, 779-791], the results can be attributed to 11 water molecules that are involved in interactions bridging hydrogen-bonding interactions with backbone amide and carbonyl groups which stabilize the 3-fold pseudosymmetric topology of interleukin 1 beta and thus constitute an integral part of the protein structure in solution.  相似文献   

9.
We have investigated the effect of surface charge on the rate of assembly of alpha beta dimers of human hemoglobin A: alpha + beta k a----alpha beta. Heme intact beta A subunits were compared with four mutant subunits which differ by integral units of charge: beta N(Lys-95----Glu) (2-); beta J(Gly-16----Asp) (1-); beta S(Glu-6----Val) (1+); beta C(Glu-6----Lys) (2+). Subunit competition experiments were performed as follows. Varying amounts of 3H-labeled alpha A subunits were added to a mixture containing equal amounts of beta A and beta X subunits so that alpha/(beta A + beta X) ranged from 0.05-1.0. The reconstituted 3H-labeled Hbs A and X were analyzed by ion-exchange high pressure liquid chromatography as well as by gel electrofocusing and fluorography. Under the solvent conditions employed (10 mM PO4(Na), pH 7.0, 0 degrees C) a predominant proportion of the beta subunits was monomeric. Therefore, the ratio of Hb X to Hb A formed from subunit reconstitution when alpha/(beta X + beta A) approached zero provides a direct measure of the relative rates of monomer combination: kXa/kAa. The experimental values of this ratio decreased monotonically with the overall charge of the variant beta subunit: beta N = 2.6; beta J = 1.5; beta S = 0.41; beta C = 0.13. In contrast surface charge had no significant effect on the rate of dissociation of the alpha beta dimer: alpha beta kd----alpha + beta. At pH 8.0, where the alpha chains lack a net surface charge, they combined equally well to beta A and beta C chains. These experiments are consistent with a two-step mechanism, alpha + beta in equilibrium (alpha...beta) in equilibrium alpha beta, where the oppositely charged monomers diffuse together under the influence of their mutual electrostatic interaction to form a nonspecifically bound encounter complex [alpha...beta] that undergoes a surface charge-independent rearrangement to form the stable dimer.  相似文献   

10.
J T Lecomte  G N La Mar 《Biochemistry》1985,24(25):7388-7395
The exchange rates of heme cavity histidine nitrogen-bound protons in horse and dog metcyanomyoglobins have been determined at 40 degrees C as a function of pH by 1H NMR spectroscopy. They were compared to the results reported for the sperm whale homologue [Cutnell, J. D., La Mar, G. N., & Kong, S. B. (1981) J. Am. Chem. Soc. 103, 3567-3572]. The rate profiles suggest that the exchange follows EX2-type kinetics, and the relative rate values favor a penetration model over a local unfolding model. It was found that the behavior of protons located on the proximal side of the heme is similar in the three proteins. The distal histidyl imidazole NH, however, shows a highly accelerated hydroxyl ion catalyzed rate in horse and dog myoglobins relative to that in sperm whale myoglobin. NMR spectral and relaxational characteristics of the assigned heme cavity protons indicate that the global geometry of the heme pocket is highly conserved in the ground-state structure of the three proteins. We propose a model that attributes the different distal histidine exchange behavior to the relative dynamic stability of the distal heme pocket in dog or horse myoglobin vs. sperm whale myoglobin. This model involves a dynamic equilibrium between a closed heme pocket as found in metaquomyoglobin [Takano, T. (1977) J. Mol. Biol. 110, 537-568] and an open pocket as found in phenylmetmyoglobin [Ringe, D., Petsko, G. A., Kerr, D. E., & Ortiz de Montellano, P. R. (1984) Biochemistry 23, 2-4].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The molybdenum-iron protein of Azotobacter vinelandii nitrogenase was separated into two subunits of equal concentration by ion exchange chromatography on sulfopropyl (SP) Sephadex at pH 5.4 in 7 M urea. Better than 90% yield of each subunit was obtained on a preparative scale if the reduced carboxymethylated molybdenum-iron protein was incubated at 45 degrees C for 45 min prior to chromatography. Without the heating step low yields of the subunits were obtained. Although the amino acid compositions of the two subunits were very similar, the NH2-terminal sequences were completely different as determined by automated sequential Edman degradation. The sequence for the alpha subunit was NH2-Ser-Gln-Gln-Val-Asp-Lys-Ile-Lys-Ala-Ser-Tyr-Pro-Leu-Phe-Leu-Asp-Gln-Asp-Tyr- and for the beta subunit the sequence was NH2-Thr-Gly-Met-Ser-Arg-Glu-Glu-Val-Glu-Ser-Leu-Ile-Gln-Glu-Val-Leu-Glu-Val-Tyr-. Likewise the COOH-terminal sequences for the two subunits, as determined with carboxypeptidase Y, were tota-ly different. The sequence for the alpha subunit was -Leu-Arg-Val-COOH and that for the beta subunit was -Ile-(Phe, Glu)-Ala-Phe-COOH. Radioautographs of tryptic peptide maps were prepared for the molybdenum-iron protein and the two subunits which had been labeled at the cysteinyl residues with iodo[2-14C]acetic acid. These maps indicated that the two subunits had no cysteinyl peptides in common and that the cysteinyl residues were clustered in both subunits.  相似文献   

12.
The exchange behavior of the guanine N(1) and uracil N(3) protons in the self-complementary hexanucleotide r(ApApGpCpUpU) has been studied at 5 degrees C in 80% H2O/20% D2O by proton NMR. Under these conditions, the hexanucleotide forms a stable miniduplex. The exchange rate of all Watson-Crick NH protons is unaffected by addition of trifluoroethylamine up to 0.07 M. On the other hand, addition of phosphate buffer, pH 6.9, enhances the exchange rate of the uracil N(3) protons of both terminal and internal A X U base pairs but does not influence the exchange rate of the guanine N(1) protons of the central G X C base pairs. Catalysis by increased phosphate concentrations results in an open-limited rate of the internal A X U base pairs with kex = 233 s-1, equivalent to a lifetime of 4.3 ms. The proton exchange of the central G X C is regulated by the opening rate of the central core of the miniduplex. On the other hand, the sensitivity of the exchange rate of internal as well as of terminal A X U base pairs can be explained by their reduced lifetime due to end "fraying" and a subsequent catalysis of the exchange process from the opened state. These results suggest that it may be possible to probe labilized parts of RNAs such as tRNA by gradual addition of the exchange catalyst phosphate and to monitor their exchange rates by proton NMR.  相似文献   

13.
The kinetics of the change from the carboxy to the deoxy conformation of the mutated hemoglobins mentioned in the title and of normal human adult hemoglobin were determined from measurements of light absorption changes occurring up to 50 microseconds after nanosecond-laser photodissociation of the corresponding CO complexes. The spectral evolution of the mutated hemoglobins was found to be similar in its main features to that of normal hemoglobin. The kinetics could be decomposed into two phases with rates 1.1-1.8 x 10(6) s-1 and 0.17-0.34 x 10(6) s-1 (except Hb St. Mandé which displayed only the faster phase). Study of the mutated subunits of HbJ Mexico (alpha subunit) and Hb H?tel Dieu (beta subunit) showed that they convert exponentially to the stable deoxy state after photodeligation at the same rates as the corresponding subunits of normal Hb: 1.1 x 10(6) s-1 (alpha) and 0.3 x 10(6) s-1 (beta). The results indicate that there is no direct correlation between the kinetics of spectral relaxation in the time range studied and the oxygenation properties for these hemoglobins. However, there is some indication that the kinetics are dependent upon the region of mutation.  相似文献   

14.
The met-cyano complex of elephant myoglobin has been investigated by high field 1H NMR spectroscopy, with special emphasis on the use of exchangeable proton resonances in the heme cavity to obtain structural information on the distal glutamine. Analysis of the distance dependence of relaxation rates and the exchange behavior of the four hyperfine shifted labile proton resonances has led to the assignment of the proximal His-F8 ring and peptide NHs and the His-FG3 ring NH and the distal Gln-E7 amide NH. The similar hyperfine shift patterns for both the apparent heme resonances as well as the labile proton peaks of conserved resonances in elephant and sperm whale met-cyano myoglobins support very similar electronic/molecular structures for their heme cavities. The essentially identical dipolar shifts and dipolar relaxation times for the distal Gln-E7 side chain NH and the distal His-E7 ring NH in sperm whale myoglobin indicate that those labile protons occupy the same geometrical position relative to the iron and heme plane. This geometry is consistent with the distal residue hydrogen bonding to the coordinated ligand. The similar rates and identical mechanisms of exchange with bulk water of the labile protons for the three conserved residues in the elephant and sperm whale heme cavity indicate that the dynamic stability of the proximal side of the heme pocket is unaltered upon the substitution (His----Gln). The much slower exchange rate (by greater than 10(4] of the distal NH in elephant relative to sperm whale myoglobin supports the assignment of the resonance to the intrinsically less labile amide side chain.  相似文献   

15.
IR spectroscopy was used to study the rate of hydrogen-deuterium (H-D) exchange of peptide NH atoms in isolated α and β subunits of human hemoglobin (Hb) at pH 5.5–9.0 and 20°C. The H-D exchange occurs by the EX2 mechanism. The retardation factor of subunit exchange rate (P) is in a range of approximately 102–107. Compared to tetrameric Hb, the probability of local fluctuations (1/P) increases to a slightly greater extent in monomeric α subunits than in tetrameric β subunits. Unlike in the whole Hb molecule, oxygenation of its subunits has no effect on the probability of local fluctuations, and the subunits show no pH-dependent changes in 1/P values (observed for liganded Hb). Probable mechanisms accounting for overall intensification of local fluctuations upon the cleavage of contacts between subunits of the tetrameric Hb molecule are discussed with regard to structural crystallographic data.  相似文献   

16.
K Ishimori  I Morishima 《Biochemistry》1986,25(17):4892-4898
The effect of heme modification on the tertiary and quaternary structures of hemoglobins was examined by utilizing the NMR spectra of the reconstituted [mesohemoglobin (mesoHb), deuterohemoglobin (deuteroHb)] and hybrid heme (meso-proto, deutero-proto) hemoglobins (Hbs). The heme peripheral modification resulted in the preferential downfield shift of the proximal histidine N1H signal for the beta subunit, indicating nonequivalence of the structural change induced by the heme modification in the alpha and beta subunits of Hb. In the reconstituted and hybrid heme Hbs, the exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds, which have been used as the oxy and deoxy quaternary structural probes, were shifted by 0.2-0.3 ppm from that of native Hb upon the beta-heme substitution. This suggests that, in the fully deoxygenated form, the quaternary structure of the reconstituted Hbs is in an "imperfect" T state in which the hydrogen bonds located at the subunit interface are slightly distorted by the conformational change of the beta subunit. Moreover, the two heme orientations are found in the alpha subunit of deuteroHb, but not in the beta subunit of deuteroHb, and in both the alpha and beta subunits of mesoHb. The tertiary and quaternary structural changes in the Hb molecule induced by the heme peripheral modification were also discussed in relation to their functional properties.  相似文献   

17.
Glycosphingolipids bearing GlcNAc beta 1----3 and GalNAc beta 1----4 linked to beta-Gal of lactosylceramide (lacto-ganglio hybrids), first isolated from a murine myelogenous leukemia cell line [Kannagi, R., Levery, S. B., & Hakomori, S. (1984) J. Biol. Chem. 259, 8444-8451], have since been found as normal components of mullet roe and English sole liver. In order to clarify the biosynthetic pathways responsible for its occurrence both as a product of normal tissues and as a possible mammalian cancer-associated antigen, the lacto-ganglio hybrid core structure LcGg4Cer was synthesized from Lc3Cer using a GalNAc beta 1----4 transferase preparation from English sole liver. A preliminary characterization of the enzyme, which may be identical to the GalNAc T-1 responsible for synthesis of GM2 ganglioside, is presented. The enzymatically synthesized product was analyzed by 1- and 2-D 1H NMR spectroscopy, confirmining its primary structure as GalNAc beta 1----4-(GlcNAc beta 1----3)Gal beta 1----4Glc beta 1----1Cer. In addition to assigning all nonexchangeable glycosyl proton resonances, measurements of several properties of the amide NH protons, including chemical shift, coupling constants, exchange rates, and temperature shift coefficients, were obtained and compared to those in the simpler constituent triglycosylceramides, Lc3- and Gg3Cer. An approximate three-dimensional structure for LcGg4Cer is proposed, consistent with all data obtained, which should be useful in discussing the results of 1H NMR analysis of compounds containing this core tetrasaccharide. The structure is characterized by an unusual arrangement of terminal N-acetylhexosamine residues, resulting in a pi-H hydrogen-bonding interaction between their acetamido groups.  相似文献   

18.
H(+)-transporting, F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the gamma and epsilon subunits of F(1). In this essay we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp(61) centered in the second transmembrane helix (TMH). A model for the structural organization of the c(10) oligomer in F(o) was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H(+)-carrying carboxyl of subunit c is occluded between neighboring subunits of the c(10) oligomer and that two c subunits pack in a "front-to-back" manner to form the H(+) (cation) binding site. In order for protons to gain access to Asp(61) during the protonation/deprotonation cycle, we propose that the outer, Asp(61)-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp(61) protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp(61). The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c(10) oligomer during coupled synthesis of ATP.  相似文献   

19.
The beta gamma subunits of G-proteins are composed of closely related beta 35 and beta 36 subunits tightly associated with diverse 6-10 kDa gamma subunits. We have developed a reconstitution assay using rhodopsin-catalyzed guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) binding to resolved alpha subunit of the retinal G-protein transducin (Gt alpha) to quantitate the activity of beta gamma proteins. Rhodopsin facilitates the exchange of GTP gamma S for GDP bound to Gt alpha beta gamma with a 60-fold higher apparent affinity than for Gt alpha alone. At limiting rhodopsin, G-protein-derived beta gamma subunits catalytically enhance the rate of GTP gamma S binding to resolved Gt alpha. The isolated beta gamma subunit of retinal G-protein (beta 1, gamma 1 genes) facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha in a concentration-dependent manner (K0.5 = 254 +/- 21 nM). Purified human placental beta 35 gamma, composed of beta 2 gene product and gamma-placenta protein (Evans, T., Fawzi, A., Fraser, E.D., Brown, L.M., and Northup, J.K. (1987) J. Biol. Chem. 262, 176-181), substitutes for Gt beta gamma reconstitution of rhodopsin with Gt alpha. However, human placental beta 35 gamma facilitates rhodopsin-catalyzed GTP gamma S exchange on Gt alpha with a higher apparent affinity than Gt beta gamma (K0.5 = 76 +/- 54 nM). As an alternative assay for these interactions, we have examined pertussis toxin-catalyzed ADP-ribosylation of the Gt alpha subunit which is markedly enhanced in rate by beta gamma subunits. Quantitative analyses of rates of pertussis modification reveal no differences in apparent affinity between Gt beta gamma and human placental beta 35 gamma (K0.5 values of 49 +/- 29 and 70 +/- 24 nM, respectively). Thus, the Gt alpha subunit alone does not distinguish among the beta gamma subunit forms. These results clearly show a high degree of functional homology among the beta 35 and beta 36 subunits of G-proteins for interaction with Gt alpha and rhodopsin, and establish a simple functional assay for the beta gamma subunits of G-proteins. Our data also suggest a specificity of recognition of beta gamma subunit forms which is dependent both on Gt alpha and rhodopsin. These results may indicate that the recently uncovered diversity in the expression of beta gamma subunit forms may complement the diversity of G alpha subunits in providing for specific receptor recognition of G-proteins.  相似文献   

20.
A chimeric plasmid carrying the structural gene (ATP2) for the mitochondrial ATPase beta subunit of Saccharomyces cerevisiae has been used to complement a mutant of Schizosaccharomyces pombe lacking the beta subunit (Boutry, M., and Goffeau, A. (1982) Eur. J. Biochem. 125, 471-477). Transformation with ATP2 restored the growth rate of S. pombe mutant on glycerol as well as the mitochondrial ATPase and 32Pi-ATP exchange activities to approximately 20% of the parental strain. Mitochondria prepared from the transformant contained a normal amount of a hybrid F1-ATPase consisting of the S. cerevisiae beta subunit assembled with the remaining subunits of the S. pombe ATPase complex. The presence of the S. cerevisiae beta subunit in the S. pombe ATPase complex conferred a sensitivity to the energy transfer inhibitors citreoviridin and oligomycin which was like that of the intact S. cerevisiae enzyme. The S. cerevisiae beta subunit assembled into the hybrid ATPase complex was the same size as the mature subunit in S. cerevisiae. These data indicate that the mechanism of mitochondrial import and the assembly of the cytoplasmically synthesized subunits is similar or identical in these evolutionary divergent yeasts. In addition, this study provides a new approach for the construction of hybrid mitochondrial ATPase complexes which can be used to examine the function of selected subunits in energy transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号