首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study determined the plant biomass (aboveground and belowground) of Salicornia brachiata from six different salt marshes distributed in Indian coastal area over one growing season (September 2014–May 2015). The nutrients concentration and their pools were estimated in plant as well as soil. Belowground biomass in S. brachiata was usually lower than the aboveground biomass. Averaged over different locations, highest biomass was observed in the month of March (2.1 t ha?1) followed by May (1.64 t ha?1), February (1.60 t ha?1), November (0.82 t ha?1) and September (0.05 t ha?1). The averaged aboveground to belowground ratio was 12.0. Aboveground and belowground biomass were negatively correlated with pH of soil, while positively with soil electrical conductivity. Further, there were positive relationships between organic carbon and belowground biomass; and available sodium and aboveground biomass. The nutrient pools in aboveground were always higher than to belowground biomass. Aboveground pools of carbon (543 kg ha?1), nitrogen (48 kg ha?1), phosphorus (4 kg ha?1), sodium (334 kg ha?1) and potassium (37 kg ha?1) were maximum in the month of March 2015. Bioaccumulation and translocation factors for sodium of S. brachiata were more than one showing tolerance to salinity and capability of phytoremediation for the saline soil.  相似文献   

2.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

3.
Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha?1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha?1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.  相似文献   

4.
Coarse woody debris (CWD) plays an important role in long-term carbon storage in forest ecosystems. However, few studies have examined CWD in mangrove forests. A secondary mangrove forest on an estuary of the Trat River showed different structures along vegetation zones ranging from the river’s edge to inland parts of the forest (the SonneratiaAvicennia, Avicennia, Rhizophora, and Xylocarpus zones, respectively). The mass distribution of CWD stock in downed wood and standing dead trees along these vegetation zones was evaluated. Most of the CWD stock in the SonneratiaAvicennia and Avicennia zones was found in downed wood, while it mainly accumulated in standing dead trees in the Rhizophora and Xylocarpus zones. The total mass of CWD stock that accumulated in each zone ranged from 1.56–8.39 t ha?1, depending on the forest structure and inundation regimes. The annual woody debris flux in each zone was calculated by summing the necromass (excluding foliage) of dead trees and coarse litter from 2010 to 2013. The average woody debris flux was 5.4 t ha?1 year?1, and its zonal variation principally depended on the necromass production that resulted from forest succession, high tree-density, and lightning. Over all the zones, the above- and below-ground net primary production (ANPP and BNPP, respectively) was estimated at 18.0 and 3.6 t ha?1 year?1, respectively. The magnitude of BNPP and its contribution to the NPP was markedly increased when fine root production was taken into consideration. The contribution of the woody debris flux without root necromass to the ANPP ranged from 12 to 28%.  相似文献   

5.
The effects of exogenous applied proline (Pro), on photosystem II (PSII) photochemistry of drought stressed (DS) 4-week old Arabidopsis thaliana plants, was studied by using chlorophyll (chl) fluorescence imaging. The maximum quantum yield of PSII photochemistry (F v /F m) in DS plants decreased significantly to 77% of that of the control value, suggesting that DS plants could not maintain PSII function, possibly due to accelerated photoinhibition of PSII. Free Pro and total soluble sugars (SS) increased, in response to DS. Exogenous foliar application of Pro by spraying, led to a remarkable increase in the accumulation of Pro and surprisingly also of SS. Both of them served to scavenge reactive oxygen species (ROS), as it was evident by the decreased lipid peroxidation level measured as malondialdehyde (MDA). DS plants sprayed with Pro showed a tolerance to photoinhibition, this indicated by F v/F m being close to values typical of healthy leaves by maintaining more than 98% of PSII function. Also the higher quantum efficiency of PSII photochemistry (Φ PSΙΙ ) and the decreased excitation pressure (1 ? q p ) recorded for stressed leaves with Pro, lead us to conclude that Pro appears to be involved in the protection of chloroplast structures by quenching ROS. The enhanced dissipation of excess light energy of PSII, in part accounts for the observed increased resistance to DS in A. thaliana leaves with Pro. Our data pointed out that Pro signalling interacts with SS signaling pathway and provided a new insight in Pro metabolism.  相似文献   

6.

Aims

Effects of different soil amendments were investigated on methane (CH4) emission, soil quality parameters and rice productivity in irrigated paddy field of Bangladesh.

Methods

The experiment was laid out in a randomized complete block design with five treatments and three replications. The experimental treatments were urea (220 kg ha?1) + rice straw compost (2 t ha?1) as a control, urea (170 kg ha?1) + rice straw compost (2 t ha?1) + silicate fertilizer, urea (170 kg ha?1) + sesbania biomass (2 t ha?1 ) + silicate fertilizer, urea (170 kg ha?1) + azolla biomass (2 t ha?1) + cyanobacterial mixture 15 kg ha?1 silicate fertilizer, urea (170 kg ha?1) + cattle manure compost (2 t ha?1) + silicate fertilizer.

Results

The average of two growing seasons CH4 flux 132 kg ha?1 was recorded from the conventional urea (220 kg ha?1) with rice straw compost incorporated field plot followed by 126.7 (4 % reduction), 130.7 (1.5 % reduction), 116 (12 % reduction) and 126 (5 % reduction) kg CH4 flux ha?1 respectively, with rice straw compost, sesbania biomass, azolla anabaena and cattle manure compost in combination urea and silicate fertilizer applied plots. Rice grain yield was increased by 15 % and 10 % over the control (4.95 Mg ha?1) with silicate plus composted cattle manure and silicate plus azolla anabaena, respectively. Soil quality parameters such as soil organic carbon, total nitrogen, microbial biomass carbon, soil redox status and cations exchange capacity were improved with the added organic materials and azolla biofertilizer amendments with silicate slag and optimum urea application (170 kg ha?1) in paddy field.

Conclusion

Integrated application of silicate fertilizer, well composted organic manures and azolla biofertilizer could be an effective strategy to minimize the use of conventional urea fertilizer, reducing CH4 emissions, improving soil quality parameters and increasing rice productivity in subtropical countries like Bangladesh.  相似文献   

7.
The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha?1 yr?1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ~50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha?1 yr?1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years.  相似文献   

8.
The phytotoxic aluminum species (Al3+) is considered as the primary factor limiting crop productivity in over 40 % of world’s arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca2+ and Mg2+ content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 ? q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca2+ and Mg2+ in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al3+ toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca2+ and Mg2+ in the leaves. We propose that the different sensitivities of wheat cultivars to Al3+ toxicity can be correlated to differences in the redox state of QA. Thus, chlorophyll fluorescence measurements can be a promising tool for rapid screening of Al resistance in wheat cultivars.  相似文献   

9.
In this study, we presented cellular morphological changes, time-resolved biochemical composition, photosynthetic performance and proteomic profiling to capture the photosynthetic physiological response of Scenedesmus acuminatus under low nitrogen (3.6 mM NaNO3, N?) and high nitrogen supplies (18.0 mM NaNO3, N+). S. acuminatus cells showed extensive lipid accumulation (53.7% of dry weight) and were enriched in long-chain fatty acids (C16 & C18) under low nitrogen supply. The activity of PSII and photosynthetic rate decreases, whereas non-photochemical quenching and dark respiration rates were increased in the N? group. In addition, the results indicated a redistribution of light excitation energy between PSII and PSI in S. acuminatus exists before lipid accumulation. The iTRAQ results showed that, under high nitrogen supply, protein abundance of the chlorophyll biosynthesis, the Calvin cycle and ribosomal proteins decreased in S. acuminatus. In contrast, proteins associated with the photosynthetic machinery, except for F-type ATPase, were increased in the N+ group (N+, 3 vs. 9 days and 3 days, N+ vs. N?). Under low nitrogen supply, proteins involved in central carbon metabolism, fatty acid synthesis and branched-chain amino acid metabolism were increased, whereas the abundance of proteins of the photosynthetic machinery had decreased, with exception of PSI (N?, 3 vs. 9 days and 9 days, N+ vs. N?). Collectively, the current study has provided a basis for the metabolic engineering of S. acuminatus for biofuel production.  相似文献   

10.
Plectosphaerella cucumerina (Lindf.) W. Gams was evaluated as a bioherbicide for Cirsium arvense L. (Scop.) using a Canadian and a New Zealand isolate. Both isolates defoliated C. arvense when applied at 1013 conidia ha?1 in water volumes ranging from 250 to 6400 l ha?1 with a rapid decline in effect with declining conidial dose. Repeat application and the addition of the adjuvant Pulse® penetrant to the conidial suspension increased the disease severity in C. arvense. Maximum disease occurred at 20 °C with a 48 h post-application dew period. The experiments demonstrate that P. cucumerina can defoliate C. arvense under the environmental conditions of temperate pastures where the weed is problematic. The results also show that modifications to formulation and strategic application may reduce the 48 h dew period requirement and risk to non-target species respectively, supporting the conclusion that the fungus has potential as a bioherbicide for C. arvense.  相似文献   

11.
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m?2 s?1) or high light (HL, 875–1000 µmol photons m?2 s?1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin?+?Antheraxantin?+?Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.  相似文献   

12.
The sustainable development of miscanthus as a bioenergy feedstock requires optimizing its fertilizer inputs and, therefore, determining its nitrogen (N) requirements. The ‘critical nitrogen dilution curve’ is a powerful tool to characterize such N requirements; it relates the N concentration ([N]) in aboveground organs to their biomass, defining two domains depending on whether the N factor limits biomass growth or not. We aimed to develop such a tool in miscanthus. Using a rhizome N depletion strategy with green cutting pre-treatment over several years before the start of the experiment, we grew, in 2014, two cultivated species, Miscanthus × giganteus (M×g) and Miscanthus sinensis (Msin), at four fertilizer levels (0, 80, 160 and 240 kg N ha?1). We found a strong nitrogen fertilization effect. The shoot [N] decreased as the aboveground biomass increased in both species and in all of the treatments. [N] was strongly correlated with leaf/stem biomass ratio. The N treatments enabled the identification of the observed critical points, i.e. points with the maximum biomass (W) and the lowest [N], on each measurement date. These points could be fitted to the following critical dilution curve that was common between M×g and Msin: N concentration (Nc) (critical [N], g N kg?1) = 27.0 W ?0.48 when W > 1 t ha?1 and Nc = 27.0 when W ≤ 1. This curve was validated by literature data, separated into N-limited or not-limited conditions. The similarity of the curves between the two species was due to compensation between leaf/stem biomass ratio and [N] in the stems. This curve is helpful to diagnose the crop N status and define the optimal fertilizer requirements of miscanthus crops.  相似文献   

13.
The plasticity response of Quercus variabilis and Quercus mongolica seedlings to combined nitrogen (N) deposition and drought stress was evaluated, and their performance in natural niche overlaps was predicted. Seedlings in a greenhouse were exposed to four N deposition levels (0, 4, 8, and 20 g N m?2 year?1) and two water levels (80 and 50 % field-water capacity). Plant traits associated with growth, biomass production, leaf physiology, and morphology were determined. Results showed that drought stress inhibited seedling performance, altered leaf morphology, and decreased fluorescence parameters in both species. By contrast increased N supply had beneficial effects on the nutritional status and activity of the PSII complex. The two species showed similar responses to drought stress. Contrary to the effects in Q. mongolica, N deposition promoted leaf N concentration, PSII activity, leaf chlorophyll contents, and final growth of Q. variabilis under well-watered conditions. Thus, Q. variabilis was more sensitive to N deposition than Q. mongolica. However, excessive N supply (20 g N m?2 year?1) did not exert any positive effects on the two species. Among the observed plasticity of the plant traits, plant growth was the most plastic, and leaf morphology was the least plastic. Therefore, drought stress played a primary role at the whole-plant level, but N supply significantly alleviated the adverse effects of drought stress on plant physiology. A critical N deposition load around 20 g N m?2 year?1 may exist for oak seedlings, which may more adversely affect Q. variabilis than Q. mongolica.  相似文献   

14.
Tomato (Solanum lycopersicum L.) being a widespread and most commonly consumed vegetable all over the world has an important economic value for its producers and related food industries. It is a serious matter of concern as its production is affected by arsenic present in soil. So, the present study, investigated the toxicity of As(V) on photosynthetic performance along with nitrogen metabolism and its alleviation by exogenous application of nitrate. Plants were grown under natural conditions using soil spiked with 25 mg and 20 mM, As(V) and nitrate, respectively. Our results revealed that plant growth indices, photosynthetic pigments, and other major photosynthetic parameters like net photosynthetic rate and maximum quantum efficiency (F v /F m ) of photosystem II (PSII) were significantly (P ≤ 0.05) reduced under As(V) stress. However, nitrate application significantly (P ≤ 0.05) alleviated As(V) toxicity by improving the aforesaid plant responses and also restored the abnormal shape of guard cells. Nitrogen metabolism was assessed by studying the key nitrogen-metabolic enzymes. Exogenous nitrate revamped nitrogen metabolism through a major impact on activities of NR, NiR, GS and GOGAT enzymes and also enhanced the total nitrogen and NO content while malondialdehyde content, and membrane electrolytic leakage were remarkably reduced. Our study suggested that exogenous nitrate application could be considered as a cost effective approach in ameliorating As(V) toxicity.  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

16.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

17.
The role of 4.1 or 8.2 μM meta-topolin (mT) on shoot multiplication, rooting and ex vitro acclimatization of micropropagated Corylus colurna L., a promising non-suckering rootstock for hazelnut (Corylus avellana L.), was examined in comparison to N6-benzyladenine (BA), the most used cytokinin in tissue culture of Corylus spp. The influence of 8.2 μM mT and BA on photosynthetic pigments content and antioxidant enzymes activity, catalase (CAT) and guaiacol peroxidase (POD), in regenerated shoots, and on the preparation of the rootstock for micrografting was also evaluated. The highest shoot multiplication was recorded on medium containing 8.2 μM mT and an overall positive effect of mT on growth and quality of micropropagated shoots was found. The highest chlorophyll a content (1.236 mg g?1 fresh weight, FW) and chlorophyll a/b ratio (2.48), and the lowest total carotenoids content (0.292 mg g?1 FW) and CAT activity (25.8 μmol min?1 mg?1 protein) were detected after 8.2 μM mT application, while no significant differences were found in chlorophyll b content and POD activity between the two cytokinins. The best rhizogenesis response (98% for 4.1 μM and 100% for 8.2 μM mT) and ex vitro acclimatization competence (higher than 78%) were exhibited from shoots multiplied on mT. Furthermore, the multiplication of rootstock on mT allowed obtaining the highest (70%) response of successful micrografting. The present findings provide the first evidence of the successful applicability of mT in C. colurna tissue culture and development of micrografted plantlets.  相似文献   

18.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

19.
Solar ultraviolet B (UVB) irradiance at the Earth’s surface is increasing due to anthropogenic influences. To evaluate the effects of enhanced UVB radiation on photosynthetic characteristics of the marine diatom Phaeodactylum tricornutum, the species was exposed to four levels of UVB radiation, 0, 0.25, 0.75, and 1.50 KJ m?2 day?1 for 7 days. Effects of UVB stress on net photosynthetic rate, net respiration rate, variable chlorophyll (Chl) fluorescence parameters, Chl a and carotenoid contents, and UV-absorbing compounds (UVACs) were investigated. Results showed that there were no significant differences in terms of net respiration rate or maximal photochemical efficiency of photosystem II (Fv/Fm) between the treatments in the short or long term. However, enhanced UVB radiation at an intensity of 0.16 W m?2 had a negative effect on the net photosynthetic rate, electron transport rate, and on the pathway of excess energy dissipation over the short term (1 to 5 days). Carotenoid and UVACs content increased under UVB radiation. Photosynthetic parameters were unaffected by UVB radiation on the seventh day indicating that P. tricornutum can adapt to UVB radiation in the long term. Results of the present study indicate that there is a dynamic balance between damage and adaptation in microalgae that enables them to adapt to UVB-induced photosystem alterations during both short-term and long-term exposure.  相似文献   

20.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号