首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The capsid protein VP2 of budgerigar fledgling disease virus (BFDV) contains two sequences (residues 309-315 and 334-340) which are homologous to the prototypic nuclear localization sequence (NLS) of the simian virus 40 T-antigen. Using recombinant potential NLS-beta-galactosidase fusion proteins we identified amino acid residues 308-317 (VPKRKRKLPT) to be the NLS of BFDV capsid proteins VP2 and VP3. Microfluorometry studies show that the BFDV-VP2 signal is considerably more efficient in nuclear transport kinetics, than the NLS of SV40-VP2, corresponding to amino acid residues 317-326 (PNKKKRKLSR).  相似文献   

3.
We have identified a basic sequence in the N-terminal region of the 67-kDa serum response factor (p67SRF or SRF) responsible for its nuclear localization. A peptide containing this nuclear localization signal (NLS) translocates rabbit immunoglobulin G (IgG) into the nucleus as efficiently as a peptide encoding the simian virus 40 NLS. This effect is abolished by substituting any two of the four basic residues in this NLS. Overexpression of a modified form of SRF in which these basic residues have been mutated confirms the absolute requirement for this sequence, and not the other basic amino acid sequences adjacent to it, in the nuclear localization of SRF. Since this NLS is in close proximity to potential phosphorylation sites for the cAMP-dependent protein kinase (A-kinase), we further investigated if A-kinase plays a role in the nuclear location of SRF. The nuclear transport of SRF proteins requires basal A-kinase activity, since inhibition of A-kinase by using either the specific inhibitory peptide PKIm or type II regulatory subunits (RII) completely prevents the nuclear localization of plasmid-expressed tagged SRF or an SRF-NLS-IgG conjugate. Direct phosphorylation of SRF by A-kinase can be discounted in this effect, since mutation of the putative phosphorylation sites in either the NLS peptide or the encoded full-length SRF protein had no effect on nuclear transport of the mutants. Finally, in support of an implication of A-kinase-dependent phosphorylation in a more general mechanism affecting nuclear import, we show that the nuclear transport of a simian virus 40-NLS-conjugated IgG or purified cyclin A protein is also blocked by inhibition of A-kinase, even though neither contains any potential sites for phosphorylation by A-kinase or can be phosphorylated by A-kinase in vitro.  相似文献   

4.
H P Rihs  R Peters 《The EMBO journal》1989,8(5):1479-1484
Selective nuclear protein transport was analyzed in single living cells. Hybrid proteins consisting of short stretches of the Simian virus 40 T-antigen and of the almost complete beta-galactosidase moiety were generated by molecular genetic methods and injected into the cytoplasm of rodent hepatoma cells. A histochemical assay showed that all proteins containing the karyophilic signal of the T-antigen (residues 126/127-132) were equally well accumulated by the nucleus within 15 h after injection. Microfluorimetric measurements of nuclear transport kinetics, however, revealed large differences. Proteins containing the karyophilic signal without flanking sequences were taken up by the nucleus on a time scale of hours. The same held for a protein containing T-antigen residues 127-147. However, a protein containing T-antigen residues 111-135 was accumulated by the nucleus with a half-time of 8-10 min reaching an equilibrium nucleocytoplasmic concentration ratio of greater than or equal to 15. Photobleaching measurements showed that, independently of subcellular localization, the mobility of all proteins was quite large. Thus, our measurements revealed a striking effect of T-antigen residues 111-125 on the kinetics of nuclear transport. Residues 111-125 do not seem to contain a second karyophilic signal. Conspicuously, however, they comprise a cluster of phosphorylation sites.  相似文献   

5.
Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV-40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import.  相似文献   

6.
The processivity factor of the human cytomegalovirus (HCMV) DNA polymerase phosphoprotein ppUL44 plays an essential role in viral replication, showing nuclear localization in infected cells. The present study examines ppUL44's nuclear import pathway for the first time, ectopic expression of ppUL44 revealing a strong nuclear localization in transfected COS-7 and other cell types, implying that no other HCMV proteins are required for nuclear transportation and retention. We show that of the two potential nuclear localization signals (NLSs) located at amino acids 162-168 (NLS1) and 425-431 (NLS2), NLS2 is necessary and sufficient to confer nuclear localization. Moreover, using enzyme-linked immunosorbent assays and gel mobility shift assays, we show that NLS2 is recognized with high affinity by the importin (IMP) alpha/beta heterodimer. Using gel mobility shift and transient transfection assays, we find that flanking sequences containing a cluster of potential phosphorylation sites, including a consensus site for protein kinase CK2 (CK2) at Ser413 upstream of the NLS, increase NLS2-dependent IMP binding and nuclear localization, suggesting a role for these sites in enhancing UL44 nuclear transport. Results from site-directed mutagenic analysis and live-cell imaging of green fluorescent protein (GFP)-UL44 fusion protein-expressing cells treated with the CK2-specific inhibitor 4,5,6,7-tetrabromobenzotriazole are consistent with phosphorylation of Ser413 enhancing ppUL44 nuclear transport.  相似文献   

7.
Synthetic short peptides containing only the nuclear localization signal (NLS) direct the transport of nonnuclear proteins into the nucleus. As a conjugate of the synthetic peptide with immunoglobulin M (IgM) did not enter the nucleus, there was believed to be a size limit for nuclear transport of NLS-conjugated proteins. However, we found that IgM conjugated with purified nucleoplasmin, a nuclear protein of Xenopus oocytes, rapidly accumulated in the nucleus. For direct comparison with the short peptide, we prepared a long peptide containing the NLS and its flanking sequences of SV40 large T-antigen and its mutated long peptide, in which possible phosphorylation sites located at the amino terminal of the NLS were changed to alanine. Kinetic experiments showed that wild-type long peptide-IgM conjugates were almost entirely taken up into the nucleus within 30 min after their injection, whereas almost 60 min was required for the mutated long peptide-IgM conjugates to enter the nucleus of all the cells examined, and there was no apparent accumulation of short peptide-IgM conjugates in the nucleus within 60 min. These results indicate that even when the kinetics of transport are affected by amino acid substitutions, the long peptide directs the transport of large molecules such as IgM into the nucleus.  相似文献   

8.
M F Chang  S C Chang  C I Chang  K Wu    H Y Kang 《Journal of virology》1992,66(10):6019-6027
Hepatitis delta antigen (HDAg) is the only known protein of hepatitis delta virus and was previously shown to localize in the nucleoplasm of infected liver cells. In this study, nuclear localization signals of HDAg were defined by expressing various domains of the antigen in both hepatic and nonhepatic cells as beta-galactosidase fusion proteins. A cytochemical staining assay demonstrated that a domain from amino acid residues 35 to 88 of HDAg was able to facilitate transport to the nucleus of the originally cytoplasm-localized protein beta-galactosidase. Two nuclear localization signals, NLS1 and NLS2, which are similar to those of simian virus 40 T antigen and polyomavirus T antigen, respectively, were identified. Either NLS1 or NLS2 alone was sufficient for the nuclear transport of HDAg. However, a fusion protein (N65Z) containing beta-galactosidase and the N-terminal 65 amino acids of HDAg, containing NLS1, was localized exclusively in the cytoplasm and perinuclear region. A possible hydrophobic subdomain between amino acid residues 50 and 65 may block the function of NLS1. Nevertheless, N65Z could enter the nuclei of transfected cells when it was coexpressed with full-length HDAg. Entry into the nucleus may be mediated by the coiled-coil structure rather than the putative leucine zipper motif located between amino acid residues 35 and 65. The existence of two independent nuclear localization signals may ensure the proper functioning of HDAg in the multiplication of delta virus in the nucleus. In addition, two putative casein kinase II sites (SRSE-5 and SREE-126) that may be important in controlling the rate of nuclear transport were found in HDAg.  相似文献   

9.
In spite of recent efforts to elucidate the nuclear import pathway of the human immunodeficiency virus type 1 (HIV-1) integrase protein (IN), its exact route as well as the domains that mediate its import are still unknown. Here, we show that a synthetic peptide bearing the amino acid residues 161-173 of the HIV-1 IN is able to mediate active import of covalently attached bovine serum albumin molecules into nuclei of permeabilized cells and therefore was designated as nuclear localization signal-IN (NLS(IN)). A peptide bearing residues 161-173 in the reversed order showed low karyophilic properties. Active nuclear import was demonstrated by using fluorescence microscopy and a quantitative ELISA-based assay system. Nuclear import was blocked by addition of the NLS(IN) peptide, as well as by a peptide bearing the NLS of the simian virus 40 T-antigen (NLS-SV40). The NLS(IN) peptide partially inhibited nuclear import mediated by the full-length recombinant HIV-1 IN protein, indicating that the sequence of the NLS(IN) is involved in mediating nuclear import of the IN protein. The NLS(IN) as well as the full-length IN protein interacted specifically with importin alpha, binding of which was blocked by the NLS(IN) peptide itself as well as by the NLS-SV40.  相似文献   

10.
11.
The heterogeneous nuclear ribonucleoprotein (hnRNP) type I, a modulator of alternative splicing, localizes in the nucleoplasm of mammalian cells and in a discrete perinucleolar structure. HnRNP I contains a novel type of bipartite nuclear localization signal (NLS) at the N-terminus of the protein that we have previously named nuclear determinant localization type I (NLD-I). Recently, a neural counterpart of hnRNP I has been identified that contains a putative NLS with two strings of basic amino acids separated by a spacer of 30 residues. In the present study we show that the neural hnRNP I NLS is necessary and sufficient for nuclear localization and represents a variant of the novel bipartite NLS present in the NLD-I domain. Furthermore, we demonstrate that the NLD-I is transported into the nucleus by cytoplasmic factor(s) with active transport modality. Binding assays using recombinant importin alpha show an interaction with NLD-I similar to that of SV40 large T antigen NLS. Deletion analysis indicates that both stretches of basic residues are necessary for binding to importin alpha. The above experimental results lead to the conclusion that importin alpha acts as cytoplasmic receptor for proteins characterized by a bipartite NLS signal that extends up to 37 residues.  相似文献   

12.
13.
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally truncated mouse receptor protein with peptides corresponding to the monopartite NLS from the simian virus 40 (SV40) large T-antigen, and the bipartite NLS from nucleoplasmin. We show that the monopartite SV40 large T-antigen NLS binds to two binding sites on the receptor, similar to what was observed in yeast importin-alpha. The nucleoplasmin NLS-importin-alpha complex shows, for the first time, the mode of binding of bipartite NLSs to the receptor. The two basic clusters in the NLS occupy the two binding sites used by the monopartite NLS, while the sequence linking the two basic clusters is poorly ordered, consistent with its tolerance to mutations. The structures explain the structural basis for binding of diverse NLSs to the sole receptor protein.  相似文献   

14.
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is essential for replication of episomal EBV DNAs and maintenance of latency. Multifunctional EBNA-1 is phosphorylated, but the significance of EBNA-1 phosphorylation is not known. Here, we examined the effects on nuclear translocation of Ser phosphorylation of the EBNA-1 nuclear localization signal (NLS) sequence, 379Lys-Arg-Pro-Arg-Ser-Pro-Ser-Ser386. We found that Lys379Ala and Arg380Ala substitutions greatly reduced nuclear transport and steady-state levels of green fluorescent protein (GFP)-EBNA1, whereas Pro381Ala, Arg382Ala, Pro384Ala, and Glu378Ala substitutions did not. Microinjection of modified EBNA-1 NLS peptide-inserted proteins and NLS peptides cross-linked to bovine serum albumin (BSA) showed that Ala substitution for three NLS Ser residues reduced the efficiency of nuclear import. Similar microinjection analyses demonstrated that phosphorylation of Ser385 accelerated the rate of nuclear import, but phosphorylation of Ser383 and Ser386 reduced it. However, transfection analyses of GFP-EBNA1 mutants with the Ser-to-Ala substitution causing reduced nuclear import efficiency did not result in a decrease in the nuclear accumulation level of EBNA-1. The results suggest dynamic nuclear transport control of phosphorylated EBNA-1 proteins, although the nuclear localization level of EBNA-1 that binds to cellular chromosomes and chromatin seems unchanged. The karyopherin alpha NPI-1 (importin alpha5), a nuclear import adaptor, bound more strongly to Ser385-phosphorylated NLS than to any other phosphorylated or nonphosphorylated forms. Rch1 (importin alpha1) bound only weakly and Qip1 (importin alpha3) did not bind to the Ser385-phosphorylated NLS. These findings suggest that the amino-terminal 379Lys-Arg380 is essential for the EBNA-1 NLS and that Ser385 phosphorylation up-regulates nuclear transport efficiency of EBNA-1 by increasing its binding affinity to NPI-1, while phosphorylation of Ser386 and Ser383 down-regulates it.  相似文献   

15.
Yu JH  Lin BY  Deng W  Broker TR  Chow LT 《Journal of virology》2007,81(10):5066-5078
Human and animal papillomavirus DNA replicates as multicopy nuclear plasmids. Replication requires two viral proteins, the origin-recognition protein E2 and the replicative DNA helicase E1. Using genetic, biochemical, and immunofluorescence assays, we demonstrated that efficient nuclear import of the human papillomavirus (HPV) type 11 E1 protein depends on a codominant bipartite nuclear localization sequence (NLS) and on phosphorylation of the serine residues S89 and S93 by the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase, and c-Jun N-terminal protein kinase. The NLS and the MAPK substrates are located within a 50-amino-acid-long peptide near the amino terminus, previously designated the localization regulatory region (LRR). The downstream NLS overlaps the cyclin-binding motif RRL, which is necessary for phosphorylation by the cyclin-dependent kinases to inactivate a dominant nuclear export sequence, also in the LRR. Alanine mutations of the MAPK substrates significantly impaired nuclear import, whereas phospho-mimetic mutations partially restored nuclear import. We further identified two MAPK docking motifs near the C terminus of E1 that are conserved among E1 proteins of many HPVs and bovine papillomavirus type 1. Mutations of these MAPK docking motifs or addition of specific MAPK inhibitors significantly reduced nuclear import. Interestingly, a fraction of the NLS-minus E1 protein was cotransported with the E2 protein into the nucleus and supported transient viral DNA replication. In contrast, E1 proteins mutated in the MAPK docking motifs were completely inactive in transient replication, an indication that additional properties were adversely affected by those changes.  相似文献   

16.
17.
We previously reported that the nuclear localization signal (NLS) peptides stimulate the in vitro phosphorylation of several proteins, including a 34 kDa protein. In this study, we show that this specific 34 kDa protein is a novel murine leucine-rich acidic nuclear protein (LANP)-like large protein (mLANP-L). mLANP-L was found to have a basic type NLS. The co-injection of Q69LRan-GTP or SV40 T-antigen NLS peptides prevented the nuclear import of mLANP-L. mLANP-L NLS bound preferentially to Rch1 and NPI-1, but not to the Qip1 subfamily of importin alpha. These findings suggest that mLANP-L is transported into the nucleus by Rch1 and/or NPI-1.  相似文献   

18.
A nuclear localization signal (NLS) is required for the transport of karyophilic proteins from the cytoplasm to the nucleus. In this study, NLS was examined in terms of its effect on diverse cellular functions such as protein phosphorylation reactions. When synthetic peptides containing the NLS of SV40 T-antigen were injected into the cytoplasm of Xenopus oocytes, and the oocytes incubated with [32P]phosphorus-containing medium, a 32 kDa protein was found to be preferentially phosphorylated in an NLS-dependent manner. The incubation of fractionated cytosolic extracts prepared from mouse Ehrlich ascites tumor cells with [γ-32P]ATP in the presence of the NLS peptides, results in the stimulation of the phosphorylation of several proteins. Similar in vitro stimulation was observed by other functional NLS peptides such as those of polyoma virus T-antigen and nucleoplasmin. Little or no stimulation, however, was detected for peptides of mutant type and reverse type NLS of SV40 T-antigen, and the C-terminal portion of lamin B. Using an in vitro assay, the phosphorylation activity was fractionated chromatographically and a fraction was obtained which contained a high level of activity. The fraction was found to contain three major proteins having molecular masses of 95, 70, and 43 kDa. The in vivo and in vitro results are consistent with the existence of a protein kinase, called NLS kinase, that is specifically activated by NLS peptides.  相似文献   

19.
Parathyroid hormone-related protein (PTHrP) is expressed by a wide variety of cells and is considered to act as a secreted factor; however, evidence is accumulating for it to act in an intracrine manner. We have determined that PTHrP localizes to the nucleus at the G1 phase of the cell cycle and is transported to the cytoplasm when cells divide. PTHrP contains a putative nuclear localization sequence (NLS) (residues 61-94) similar to that of SV40 T-antigen, which may be implicated in the nuclear import of the molecule. We identified that Thr85 immediately prior to the NLS of PTHrP was phosphorylated by CDC2-CDK2 and phosphorylation was cell cycle-dependent. Mutation of Thr85 to Ala85 resulted in nuclear accumulation of PTHrP, while mutation to Glu85 to mimic a phosphorylated residue resulted in localization of PTHrP to the cytoplasm. Combined, the data demonstrate that the intracellular localization of PTHrP is phosphorylation- and cell cycle-dependent, and such control further supports a potential intracellular role (10,34,35) for PTHrP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号