首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membranes isolated from normal and RSV transformed chick embryo fibroblasts were phosphorylated in vitro using endogenous protein kinase and ATP (gamma32P) and the labeled phosphoproteins were analyzed by SDS-PAGE. A number of protein phosphorylation changes were observed following transformation, however in most cases they were relatively small quantitative differences. The four major changes were in proteins of 47,000, 58,000, 75,000 and 135,000 daltons. Decreased phosphorylation of the 47,000 dalton polypeptide was found in transformed cell membranes but this alteration was shown to be due to differences in cell growth rather than transformation. Increase phosphorylation of the 75,000 dalton protein was at least partially related to virus infection. However, increased phosphorylation of the 58,000 and 135,000 dalton polypeptides were entirely transformation specific.  相似文献   

2.
Antisera to disrupted Rauscher leukemia virus (RLV) or to the purified Rauscher viral 30,000 dalton polypeptide were used to specifically precipitate newly synthesized intracellular viral polypeptides from extracts of infected NIH Swiss mouse cells (JLS-V16). Analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of extracts from cells pulse-labeled for 10–20 min with 35S-methionine showed that immune precipitates contained none of the nonglycosylated internal structural polypeptides of mature viruses. The major viral-specific polypeptides labeled in 10 min included polypeptides of 180,000, 140,000, 110,000, 80,000, and 60,000 daltons with minor polypeptides of 65,000, 50,000, and 40,000 daltons. Labeling the intracellular virus-specific polypeptides with 14C-glucosamine indicated that the 180,000, 110,000, 80,000, and 60,000 dalton polypeptides were glycosylated, and all but the 110,000 dalton polypeptides are contained in the mature virions. Based on pulse-chase experiments, it appears that at least 3 of the large polypeptides (140,000, 65,000, and 50,000 daltons) are precursors to the three major internal structural polypeptides of the mature virions.  相似文献   

3.
We have examined the phosphorylation of a 50,000-dalton cellular polypeptide associated with the Rous sarcoma virus (FSV) transforming protein pp60-src. It has been shown that pp60src forms a complex with two cellular polypeptides, an 89,000-dalton heat-shock protein (89K) and a 50,000-dalton phosphoprotein (50K). The pp60src-associated protein kinase activity phosphorylates at tyrosine residues, and the 50K polypeptide present in the complex contains phosphotyrosine and phosphoserine. These observations suggest that the 50K polypeptide may be a substrate for the protein kinase activity of pp60src. To examine this possibility, we isolated the 50K polypeptide by two-dimensional polyacrylamide gel electrophoresis from lysates of uninfected or virally infected cells. Tryptic phosphopeptide analysis indicated that the 50K polypeptide isolated by this method was the same polypeptide as that complexed to pp60src. In uninfected cells or cells infected by a transformation-defective mutant, the 50K polypeptide contained phosphoserine but little or no phosphotyrosine. In cells infected by Schmidt-Ruppin or Prague RSV, there was a 40- to 50-fold increase in the quantity of phosphotyrosine in the 50K protein. Thus, the phosphorylation of the 50K polypeptide at tyrosine is dependent on the presence of pp60src. However, the 50K polypeptide isolated from cells infected by temperature-sensitive mutants of RSV was found to be phosphorylated at tyrosine at both permissive and nonpermissive temperatures; this behavior is different from that of other substrates or putative substrates of the pp60src kinase activity. It is possible that the 50K polypeptide is a high-affinity substrate of pp60src.  相似文献   

4.
Neurofilament protein is phosphorylated in the squid giant axon   总被引:12,自引:6,他引:6       下载免费PDF全文
We have observed the phosphorylation of neurofilament protein from squid axoplasm. Phosphorylation is demonstrated by 32P labeling of protein during incubation of axoplasm with [gamma-32P]ATP. When the labeled proteins are separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), two bands, at 2.0 x 10(5) daltons and greater than 4 x 10(5) daltons, contain the bulk of the 32P. The 2.0 x 10(5)-dalton phosphorylated polypeptide comigrates on SDS-PAGE with one of the subunits of squid neurofilament protein. Both major phosphorylated polypeptides co-fractionate with neurofilaments in discontinuous sucrose gradient centrifugation and on gel filtration chromatography on Sepharose 4B. The protein-phosphate bond behaves like a phospho-ester, and labeled phospho-serine is identified in an acid hydrolysate of the protein. The generality of this phenomenon in various species and its possible physiological significance are discussed.  相似文献   

5.
Rod outer segments (ROS) from rat were purified on Percoll gradients. These ROS had intact plasma membranes since they were impermeable to small molecules. Protein phosphorylation in the purified ROS was studied after the plasma membrane was disrupted by freeze/thawing. [gamma-32P]ATP was used as phosphate donor. ATP concentration, time, temperature, and light or dark adaptation were varied in the assays. The 32P-labeled proteins were separated by polyacrylamide gel electrophoresis and autoradiographed. Rhodopsin was the dominant phosphorylated protein, and the addition of adenosine cyclic 3',5'-phosphate (cAMP) or guanosine cyclic 3',5'-phosphate (cGMP) (10(-4) M) did not qualitatively alter the ROS phosphorylation pattern. The only cyclic nucleotide effect we could establish in these experiments was the inhibition of rhodopsin phosphorylation by cGMP. This inhibition did not appear to be competitive with ATP since cAMP was much less inhibitory than cGMP and the phosphorylation in the presence of cGMP reached a plateau at a much lower level than in control conditions. Hypotheses implying an involvement of protein phosphorylation/dephosphorylation in dark adaptation have been formulated [Miller, J. A., & Paulsen, R. (1975) J. Biol. Chem. 250, 4427-4432; Kuhn, H., McDowell, J. H., Leser, K. H., & Bader, S. (1977) Biophys. Struct. Mech. 3, 175-180]; we suggest that cGMP may control this process through the modulation of the extent of inhibition of phosphorylation of the visual pigment.  相似文献   

6.
Summary Lateral (L) cilia ofMytilus gill are activated by serotonin which, in molluscan systems, is known to activate adenylate cyclase. Triton-extracted models of L-cells, arrested at >10–6 M Ca++, are stimulated to beat by the addition of 10–5 M cAMP while still under Ca++ arrest conditions, suggesting that cAMP-activation is not mediated by alterations of Ca++ levels. Using isolated, permeabilized cilia, we find, independent of [Ca++], that cAMP-dependent protein phosphorylation in L-cilia occurs uniquely and reversibly on three low molecular weight polypeptides of 23,000, 18,000, and 14,000 daltons. Phosphorylation is maximal at cAMP concentrations above 0.5 M. The phosphorylated chains partially coextract at high salt with a 14S dynein fraction and have approximately the same molecular weights as reported for dynein light chains. Such conditions mainly extract the outer dynein arm, about 40% of the Mg++-ATPase activity, and a corresponding amount of the cAMP phosphorylated chains. However, the three polypeptides sediment together at 10–11S, clearly separable from the 14S dynein ATPase. Using a gel-overlay technique, we find that calmodulin binds to axonemal polypeptides of L-cilia with molecular weights of 18,000 and 13,000, independent of Ca++, while in mixed-population cilia, only a 12,000 dalton chain binds calmodulin, in a Ca++ dependent manner. In neither case are calmodulin binding proteins found in the high salt fraction containing the cAMP-dependent phosphorylated chains, indicating that, in spite of some similarity in molecular weight, the cAMP-phosphorylated and calmodulin binding polypeptides are different. Also, double-labeling indicates that only the 18,000 dalton chains co-migrate. These data suggest that serotonin may activate lateral cilia through a cAMP-dependent phosphorylation of a dynein-associated regulatory protein complex, while Ca++ may inhibit ciliary movement, independently, by binding to calmodulin associated with a different class of regulatory protein.  相似文献   

7.
Cyclic AMP dependent protein kinase (PKA) from Pichia pastoris yeast cells was found to be activated by either cAMP or cGMP. Analogs of cAMP such as 8-chloro-cAMP and 8-bromo-cAMP were as potent as cAMP in PKA activation while N6,2'-O-dibutyryl-cAMP did not stimulate the enzyme activity. It was shown that protamine sulfate was almost equally phosphorylated in the presence of 1-2 x 10(-6)M cAMP or cGMP while other substrates such as Kemptide, ribosomal protein S6, were phosphorylated to a lower extent in the presence of cGMP. It was demonstrated that pyruvate kinase is a substrate of PKA which co-purified with the P.pastoris enzyme. Moreover, pyruvate kinase was phosphorylated by PKA in the presence of cAMP and cGMP to comparable levels.  相似文献   

8.
In canine cardiac sarcoplasmic reticulum, adenosine 3',5'-monophosphate (cyclic AMP)-dependent protein kinase specifically phosphorylates two proteins, as seen by sodium dodecyl sulfate-slab gel electrophoresis and autoradiography. One protein has a molecular weight ranging between 22,000 and 24,000 daltons and has previously been identified and named phospholamban (Tada, M., Kirchberger, M.A. and Katz, A.M. (1975) J. Biol. Chem. 250, 2640-2647). The other protein that the 32P label incorporates into has a molecular weight of approximately 6000. Like the 22,000 dalton protein, the 6000 dalton protein has characteristics of phosphoester bonding. The time-dependent course of phosphorylation shows that initially the 32P label is incorporated more rapidly into the 22,000 dalton protein than the 6000 dalton protein, with both proteins reaching a steady-state level of phosphorylation after 10 min of incubation. When both protein kinase and cyclic AMP are eliminated from the incubation medium, both the 22,000 and the 6000 dalton protein are still phosphorylated, but only to about a quarter of the activity found when cyclic AMP and protein kinases are included in the incubation mixture. The addition of phosphodiesterase completely eliminates the phosphorylation of both proteins. Treating the microsomes with trypsin prevents subsequent phosphorylation of either protein. Phosphorylating the microsomes first, then treating with trypsin, renders both the 22,000 and the 6000 dalton proteins resistant to even prolonged trypsin attack. Unphosphorylated, both proteins are solubilized by a very low concentration of deoxycholate. After phosphorylation the proteins cannot be solubilized by deoxycholate. Phosphorylation appears to alter greatly the physical properties of these proteins. Control experiments exclude the possibility that a lipid is being phosphorylated. After phosphorylation the phosphorylated 22,000 dalton protein is separated from the 6000 dalton protein by proteolipid extraction. After first treating the microsomes with methanol, the 22,000 dalton protein is then soluble in acidified chloroform/methanol, while the 6000 dalton protein remains insoluble. The finding that both proteins have much different biochemical properties when phosphorylated than when not, may be relevant in how they regulate calcium transport in the sarcoplasmic reticulum.  相似文献   

9.
Summary Saccharomyces cerevisiae 2-m DNA and some of its restriction fragments were integrated in vector pCR1, pBR313 or pBR322 and their expression in Escherichia coli P678-54 minicells was analyzed. 2-m DNA inserted at the EcoRI site of pCR1 or pBR313 and at the PstI site of pBR322, promoted the synthesis of polypeptides of 48,000, 37,000, 35,000 and 19,000 daltons. The DNA regions coding for these polypeptides were mapped on the 2-m DNA molecule by insertion of single EcoRI or HindIII restriction fragments and comparison of the polypeptides produced. For the synthesis of the 37,000 dalton polypeptide, intact sites RIB and H3 were required. The disappearance of the 37,000 dalton polypeptide on interruption of one of these sites by insertion of the vector, was correlated with the appearance of a polypeptide of 22,000 or 23,500 daltons repectively. The DNA sequence coding for the 37,000 dalton polypeptide, therefore, has to be located in the S-loop region close to or overlapping with the sites RIB and H3. Assuming that the 22,000 and the 23,500 dalton polypeptides are truncated forms of the 37,000 dalton polypeptide, the last polypeptide can be exactly mapped. The polypeptide of 48,000 daltons was mapped to that half of the L-loop segment containing the sites H1 and H2. If, however, HindIII fragment H1-H2 was expressed, the 48,000 dalton polypeptide was lost and concomitantly a 43,000 dalton polypeptide appeared. We assume that this polypeptide results from early termination of the polypeptide of 48,000 daltons. The 35,000 and 19,000 dalton polypeptides were mapped to the S-loop region.The integrated inverted repeat sequence of yeast 2-m DNA did not induce any detectable insert-specific polypeptide synthesis.  相似文献   

10.
In canine cardiac sarcoplasmic reticulum, adenosine 3′,5′-monophosphate (cyclic AMP)-dependent protein kinase specifically phosphorylates two proteins, as seen by sodium dodecyl sulfate-slab gel electrophoresis and autoradiography. One protein has a molecular weight ranging between 22 000 and 24 000 daltons and has previously been identified and named phospholamban (Tada, M., Kirchberger, M.A. and Katz, A.M. (1975) J. Biol. Chem. 250, 2640–2647). The other protein that the 32P label incorporates into has a molecular weight of approximately 6000. Like the 22 000 dalton protein, the 6000 dalton protein has characteristic of phosphoester bonding. The time-dependent course of phosphorylation shows that initially the 32P label is incorporated more rapidly into the 22 000 dalton protein than the 6000 dalton protein, with both proteins reaching a steady-state level of phosphorylation after 10 min of incubation. When both protein kinase and cyclic AMP are eliminated from the incubation medium, both the 22 000 and the 6000 dalton protein are still phosphorylated but only to about a quarter of the activity found when cyclic AMP and protein kinase are included in the incubation mixture. The addition of phosphodiesterase completely eliminates the phosphorylation of both proteins. Treating the microsomes with trypsin prevents subsequent phosphorylation of either protein. Phosphorylating the microsomes first, then treating with trypsin, renders both the 22 000 and the 6000 dalton proteins resistant to even prolonged trypsin attack. Unphosphorylated, both proteins are solubilized by a very low concentration of deoxycholate. After phosphorylation the proteins cannot be solubilized by deoxycholate. Phosphorylation appears to alter greatly the physical properties of these proteins.Control experiments exclude the possibility that a lipid is being phosphorylated. After phosphorylation, the phosphorylated 22 000 dalton protein is separated from the 6000 dalton protein by proteolipid extraction. After first treating the microsomes with methanol, the 22 000 dalton protein is then soluble in acidified chloroform/methanol, while the 6000 dalton protein remains insoluble. The finding that both proteins have much different biochemical properties when phosphorylated than when not, may be relevant in how they regulate calcium transport in the sarcoplasmic reticulum.  相似文献   

11.
The pattern of polypeptides at different stages of strawberry (Fragaria ananassa Duch. cv Ozark Beauty) fruit development was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An 81,000-dalton polypeptide appeared between 5 and 10 days after pollination. Polypeptides with molecular weights of 76,000 and 37,000 daltons were formed after 10 days. The control exerted by auxin in the stage-specific formation of polypeptides was investigated by stopping fruit growth after removing the achenes and reinitiating fruit growth by the application of a synthetic auxin, α-naphthaleneacetic acid (NAA). When the achenes were removed from the 5- and 10-day-old fruits, the fruits failed to grow, the 81,000 dalton polypeptide was not formed between 5 and 10 days, and the 76,000- and 37,000-dalton polypeptides were not formed between 10 and 20 days. Application of NAA to fruits deprived of auxin by removal of achenes resulted in the resumption of growth and also in the appearance of these polypeptides. Removal of achenes of the 5- or 10-day-old fruits and growing them without auxin resulted in the formation of 52,000- and 57,000-dalton polypeptides. These two polypeptides were not formed when NAA was applied to fruits after removal of achenes. Supply of NAA to auxin-deprived fruits 5 days after removal of achenes resulted in resumption of growth and also in the disappearance of these two polypeptides, pointing out their possible relation to the inhibition of fruit growth.  相似文献   

12.
The M species (medium sized) dsRNA (1.1–1.4 × 106 daltons) isolated from a toxin-producing yeast killer strain (K+R+) and three related, defective interfering (suppressive) S species dsRNAs of the yeast killer-associated cytoplasmic multicomponent viral-like particle system were analyzed by in vitro translation in a wheat germ cell-free protein synthesis system. Heat-denatured M species dsRNA programmed the synthesis of two major polypeptides, M-P1 (32,000 daltons) and M-P2 (30,000 daltons). M-P1 has been shown by the criteria of proteolytic peptide mapping and cross-antigenicity to contain the 12,000 dalton polypeptide corresponding to the in vivo produced killer toxin, thus establishing that it is the M species dsRNA which carries the toxin gene. An M species dsRNA obtained from a neutral strain (K?R+) also programmed the in vitro synthesis of a polypeptide identical in molecular weight to M-P1, thus indicating that the cytoplasmic determinant of the mutant neutral phenotype is either a simple point mutation in the dsRNA toxin gene or a mutation in a dsRNA gene which is required for functional toxin production. In vitro translation of each of the three different suppressive S dsRNAs resulted in the production of a polypeptide (S-P1) of approximately 8000 daltons instead of the 32,000 dalton M-P1 polypeptide programmed by M dsRNA. This result is consistent with the heteroduplex analysis of these dsRNAs by Fried and Fink (1978), which shows retention of M dsRNA ends, accompanied by large internal deletions in each of the S dsRNAs translated.  相似文献   

13.
Protein kinase activities were identified in a soluble and a particulate fraction from the A. coronaria of cattle. For both protein kinase activities Mg++ is essential. Protamine was used as a substrate of the protein kinase activity of the soluble fraction. The pH optimum of the protein kinase activity of the soluble fraction is around 6.5. The Km-value of the protein kinase for ATP is 1.9 +/- 0.4 - 10(-5) M. cAMP stimulates the protein kinase activity more effectively than cGMP. Ca++ cannot replace Mg++; monovalent cations (Na+ and K+) show no influence. The protein kinase activity of the fraction was determined via endogenous phosphorylation. By means of the cAMP-dependent particulate protein kinase 72 to 80 percent of the serine residues are phosphorylated. The pH optimum of the protein kinase activity of the particulate fraction lies around 7.0. The Km-value of the enzyme for ATP is 6.6 +/- 0.8 - 10(-5) M. cGMP stimulates the protein kinase of the particulate fraction better than cAMP. For the protein kinase activity of this fraction Ca++ replaces Mg++ in the endogenous phosphorylation but not in the exogenous phosphorylation (protamine). In the presence of Mg++ and in the additional presence of Na+ or K+, the protein kinase activity is suppressed in the endogenous phosphorylation whereas it is stimulated in the exogenous phosphorylation.  相似文献   

14.
Intermediate filaments in nervous tissues   总被引:59,自引:30,他引:29  
Intermediate filaments have been isolated from rabbit intradural spinal nerve roots by the axonal flotation method. This method was modified to avoid exposure of axons to low ionic strength medium. The purified filaments are morphologically 75-80 percent pure. The gel electrophoretogram shows four major bands migrating at 200,000, 145,000, 68,000, and 60,000 daltons, respectively. A similar preparation from rabbit brain shows four major polypeptides with mol wt of 200,000 145,000, 68,000, and 51,000 daltons. These results indicate that the neurofilament is composed of a triplet of polypepetides with mol wt of 200,000, 145,000, and 68,000 daltons. The 51,000-dalton band that appears in brain filament preparations as the major polypeptide seems to be of glial origin. The significance of the 60,000- dalton band in the nerve root filament preparation is unclear at this time. Antibodies raised against two of the triplet proteins isolated from calf brain localize by immunofluorescence to neurons in central and peripheral nerve. On the other hand, an antibody to the 51,000-dalton polypeptide gives only glial staining in the brain, and very weak peripheral nerve staining. Prolonged exposure of axons to low ionic strength medium solubilizes almost all of the triplet polypeptides, leaving behind only the 51,000- dalton component. This would indicate that the neurofilament is soluble at low ionic strength, whereas the glial filament is not. These results indicate that neurofilaments and glial filaments are composed of different polypeptides and have different solubility characteristics.  相似文献   

15.
In preparations of human platelet microsomes, cyclic AMP-dependent protein kinase induced the rapid phosphorylation of a single protein that was electrophoretically identical to the 22,000 dalton protein (P22) phosphorylated by cAMP in intact platelets. Phosphorylation of the microsomal protein was maximal at one minute and was followed by slow dephosphorylation. Although the protein was associated with a microsomal fraction, it could be separated from the membrane by 2 M NaCl indicating that it was a peripheral protein. Molecular weight was estimated by NaDodSO4-PAGE and by gel filtration chromatography. The molecular weight estimated by NaDodSO4-PAGE was 22,400 daltons and was somewhat larger than the 16,000 molecular weight estimated by gel filtration in the presence of NaDodSO4. In the absence of NaDodSO4, the protein chromatographed as a 36,000 dalton form. The presence of the 36,000 dalton form was not dependent on the phosphorylation state of the protein. The partially purified protein contained phosphoserine, but no phosphothreonine or phosphotyrosine. Two dimensional NaDodSO4-PAGE and isoelectric focusing of the phosphorylated protein revealed isomers with pl values of 5.9 and 6.3. These studies indicate that the 22 kDa microsomal protein and P22 in intact platelets are the same protein and that the 22 kDa protein is tightly bound to the microsomal membrane although the nature of this binding and the microsomal component(s) to which it is bound remain to be determined. We conclude that the 22 kDa protein in platelet microsomes is structurally distinct from, but functionally similar to, phospholamban, the cAMP-dependent protein kinase substrate in muscle, and may play a similar role in calcium transport. Based on this similarity, it is proposed that the 22 kDa protein in platelets be called thrombolamban.  相似文献   

16.
A Sen 《Journal of virology》1981,39(2):612-624
The low-molecular-weight (LMW) protein kinase associated with high-titer murine sarcoma virions have been extensively purified by ammonium sulfate fractionation. Bio-Gel P-100 gel filtration, DEAE-cellulose and carboxymethyl cellulose chromatography. The purified enzyme migrates as a 16K polypeptide in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme catalyzes phosphotransfer with ATP as a phosphate donor to various exogenously added proteins as acceptors; it requires Mg2+ and is independent of cyclic AMP. The enzyme preparation catalyzes a low level of phosphorylation in the absence of any exogenously added substrate and forms phosphotyrosine. However, in the presence of acceptor protein molecules including total soluble cytoplasmic proteins of murine sarcoma virus-transformed mouse cells, the phosphorylated end products contain predominantly phosphoserine. The virion-associated enzyme also shows a preference for phosphorylating certain polypeptides in the soluble cytoplasmic extracts of murine sarcoma virus-transformed cells.  相似文献   

17.
Analysis of Saccharomyces cerevisiae genome revealed no sequence homologous to cyclic GMP (cGMP) dependent protein kinase from other organisms. Here we demonstrate that cyclic AMP (cAMP) dependent protein kinase purified from S. cerevisiae was almost equally activated by cAMP and cGMP in 3 x 10(-6) M concentrations of either nucleotide in the presence of Mg2+ ions. Interestingly, if Mn2+ ions were used instead of Mg2+, cGMP was only 30% as effective as cAMP in the activation of cAMP-dependent protein kinase. Analogs of cAMP such as 8-chloro-cAMP and 3':5'-cyclic monophosphate of ribofuranosylbenzimidazole were as potent as cAMP in the enzyme activation, while N6,2'-O-dibutyryl-cAMP activated the enzyme to a lower extent. It was also found that yeast cAMP-dependent protein kinase can be activated by limited proteolytic digestion. The results presented were obtained with protamine and ribosomal protein S10 used as phosphorylation substrates.  相似文献   

18.
Double-stranded RNA (dsRNA) activates a cyclic 3′: 5′-AMP independent protein kinase (dsI) in reticulocyte lysates which inhibits protein synthesis by phosphorylating the 38, 000 dalton (38K) subunit of the initiation factor eIF-2 (eIF-2α). A latent precursor form of dsI (latent dsI) has been partially purified (1000–2000 fold) from lysates. Activation of dsI at all stages in the purification of latent dsI requires ATP and low levels of dsRNA (1–20 ng/ml), and is accompanied by the phosphorylation of a broad 67,000 dalton (67K) band. However, as purification proceeds the 67K band is resolved into two phosphorylated polypeptides of 68,500 and 67,000 daltons (68.5K67K). Although latent dsI and activated dsI have distinctly different chromatographic properties, both forms have similar molecular weights (~120,000) and similar sedimentation coefficients (~3.8S) in glycerol gradients. The data support the view that one or both components of the 68.5K67K doublet are associated with the dsRNA-dependent protein kinase activity.  相似文献   

19.
Previous studies have purified from brain a Ca2+/calmodulin-dependent protein kinase II (designated CaM-kinase II) that phosphorylates synapsin I, a synaptic vesicle-associated phosphoprotein. CaM-kinase II is composed of a major Mr 50K polypeptide and a minor Mr 60K polypeptide; both bind calmodulin and are phosphorylated in a Ca2+/calmodulin-dependent manner. Recent studies have demonstrated that the 50K component of CaM-kinase II and the major postsynaptic density protein (mPSDp) in brain synaptic junctions (SJs) are virtually identical and that the CaM-kinase II and SJ 60K polypeptides are highly related. In the present study the photoaffinity analog [alpha-32P]8-azido-ATP was used to demonstrate that the 60K and 50K polypeptides of SJ-associated CaM-kinase II each bind ATP in the presence of Ca2+ plus calmodulin. This result is consistent with the observation that these proteins are phosphorylated in a Ca2+/calmodulin-dependent manner. Experiments using 32P-labeled peptides obtained by limited proteolysis of 60K and 50K polypeptides from SJs demonstrated that within each kinase polypeptide the same peptide regions contain both autophosphorylation and 125I-calmodulin binding sites. These results suggested that the autophosphorylation of CaM-kinase II could regulate its capacity to bind calmodulin and, thus, its capacity to phosphorylate substrate proteins. By using 125I-calmodulin overlay techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis we found that phosphorylated 50K and 60K CaM-kinase II polypeptides bound more calmodulin (50-70%) than did unphosphorylated kinase polypeptides. Levels of in vitro CaM-kinase II activity in SJs were measured by phosphorylation of exogenous synapsin I. SJs containing highly phosphorylated CaM-kinase II displayed greater activity in phosphorylating synapsin I (300% at 15 nM calmodulin) relative to control SJs that contained unphosphorylated CaM-kinase II. The CaM-kinase II activity in phosphorylated SJs was indistinguishable from control SJs at saturating calmodulin concentrations (300-1,000 nM). These findings show that the degree of autophosphorylation of CaM-kinase II in brain SJs modulates its in vitro activity at low and possibly physiological calmodulin concentrations; such a process may represent a mechanism of regulating this kinase's activity at CNS synapses in situ.  相似文献   

20.
The subunit structures of protochlorophyllide holochrome (PCH) and chlorophyllide holochrome (CH) were studied by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. PCH from leaves of dark-grown (Phaseolus vulgaris var. red kidney) is a polymeric pigment-protein complex of approximately 600,000 daltons. It is composed of 12 to 14 polypeptides of 45,000 daltons, when examined prior to and immediately following photoconversion. The protochlorophyllide or chlorophyllide pigment molecules are associated with these polypeptides. Subsequent to photoconversion, the absorption maximum of newly formed chlorophyllide shifts from 678 nm to 674 nm upon standing in darkness. Following the 678 to 674 spectral shift, the chlorophyllide is associated with a polypeptide with a molecular weight of 16,000 daltons. In addition, sucrose gradient centrifugation of PCH and CH under nondenaturing conditions indicates that during the course of the dark spectroscopic shift, the 600,000 dalton CH undergoes dissociation into a small chlorophyllide protein. The dissociation of CH, the change in the molecular weight of the chlorophyllide polypeptide from 45,000 to 16,000 daltons, as well as the dark spectroscopic shift are temperature-dependent and blocked below 0 C. It was also found that each holochrome molecule of 600,000 daltons contains at least four protochlorophyllide pigment molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号