首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The apical ectodermal ridge plays a central role in limb development through its interactions with the underlying mesenchyme. Removal of the AER results in cessation of limb outgrowth and leads to truncation of the limb along the proximo-distal axis. The many functions attributed to the ridge include maintenance of the progress zone mesenchyme. Here, cells are stimulated to proliferate, are maintained in an undifferentiated state, and are assigned progressively more distal positional values as the limb grows. The AER also functions to maintain the activity of the polarizing region, a region of mesenchyme which is thought to provide the primary signal for patterning along the antero-posterior axis. We have begun to explore the function of fibroblast growth factor-4 (FGF-4) during limb development. FGF-4, which encodes an efficiently secreted protein, is expressed in the AER. We have previously demonstrated that FGF-4 protein can stimulate limb mesenchyme proliferation and can induce the expression of a downstream homeobox gene, Evx-1 (homologue of the Drosophila even-skipped gene), that is normally regulated by a signal from the AER. To determine to what extent FGF-4 protein can substitute for the AER to allow normal limb outgrowth, we performed experiments on the developing chick limb in ovo. Remarkably, we find that after AER removal, the FGF-4 protein can provide all the signals required for virtually normal outgrowth and patterning of the limb. Further studies indicate that proliferation of progress zone cells is not sufficient, and that an additional signal is produced by the posterior mesenchyme in response to FGF-4 which enables progress zone cells to acquire progressively more distal fates. Thus FGF-4 maintains progress zone activity through a combination of at least two signals—one that acts directly on progress zone cells to stimulate their proliferation, and one that acts indirectly by maintaining the production of patterning signal(s) by the posterior mesenchyme. We further show that failure of the posterior mesenchyme to produce this signal correlates with failure to maintain polarizing activity. This raises the possibility that the signal produced by the posterior mesenchyme and required for progressive proximo-distal limb patterning is identical to the polarizing activity. Further experiments demonstrate that retinoic acid, which mimics the activity of the polarizing region, can supply this signal. In conclusion, the finding that a single growth factor can serve as both the direct and indirect signals required to maintain progress zone activity provides a simple mechanism for ensuring that growth and pattern formation are linked in the developing limb. © 1994 Wiley-Liss, Inc.  相似文献   

3.
The Gag protein of Rous sarcoma virus has the ability to direct particle assembly at the plasma membrane in the absence of all the other virus-encoded components. An extensive deletion analysis has revealed that very large regions of this protein can be deleted without impairing budding and has suggested that the essential functions map to three discrete regions. In the studies reported here, we establish the location of assembly domain 2 (AD2) within the proline-rich p2b sequence of this Gag protein. AD2 mutants lacking the p2b sequence were completely defective for particle release even though their Gag proteins were tightly associated with the membrane fraction and exhibited high levels of protease activity. Mutations that inactivate the viral protease did not restore budding to wild-type levels for these mutants, indicating that the defect is not due simply to a loss of protease regulation. AD2 mutants could be rescued into dense particles in genetic complementation assays, indicating that their defect is not due to a gross alteration of the overall conformation of the protein and that the assembly function is not needed on every Gag molecule in the population. Several mutants with amino acid substitutions in the p2b sequence were found to have an intermediate capacity for budding. Inactivation of the protease of these mutants stabilized the Gag polyprotein within the cells and allowed an increase in particle release; however, the rate of budding remained slow. We favor the idea that AD2 is a dynamic region of movement, perhaps serving as a molecular hinge to allow the particle to emerge from the surface of the cell during budding.  相似文献   

4.
Transdifferentiation of the multipotent atrial epithelium is a key event during budding of the ascidian Polyandrocarpa misakiensis. The transdifferentiation is induced by mesenchyme cells that were stimulated by retinoic acid. The fluorescent differential display identified a few cDNA fragments for retinoic acid-inducible genes. One of the cDNA clones, named Pm-GnRHR, encoded a seven-pass transmembrane receptor similar to gonadotropin-releasing hormone receptors. Putative amino acid sequence showed high similarity to Ciona intestinalis GnRHRs and formed a cluster with other GnRHR proteins in a phylogenetic tree. The level of expression of the Pm-GnRHR mRNA increased during the early stage of bud development, suggesting that the Pm-GnRHR function is involved in some aspects of bud development.  相似文献   

5.
6.
We have previously isolated several cDNA clones specific for mRNA species that increase in abundance during the retinoic acid-associated differentiation of F9 teratocarcinoma stem cells. One of these mRNAs, J6, encodes a approximately 40 kDa protein as assayed by hybrid selection and in vitro translation (Wang, S.-Y., LaRosa, G., and Gudas, L. J. (1985) Dev. Biol. 107, 75-86). The time course of J6 mRNA expression is similar to those of both laminin B1 and collagen IV (alpha 1) messages following retinoic acid addition. To address the functional role of this protein, we have isolated a full-length cDNA clone complementary to this approximately 40-kDa protein mRNA. Sequence analysis reveals an open reading frame of 406 amino acids (Mr 45,652). The carboxyl-terminal portion of this predicted protein contains a region that is homologous to the reactive sites found among members of the serpin (serine protease inhibitor) family. The predicted reactive site (P1-P1') of this J6 protein is Arg-Ser, which is the same as that of antithrombin III. Like ovalbumin and human monocyte-derived plasminogen activator inhibitor (mPAI-2), which are members of the serpin gene family, the J6 protein appears to have no typical amino-terminal signal sequence.  相似文献   

7.
Retinoids (vitamin A derivatives) are important for normal embryogenesis and retinoic acid, an acidic derivative of vitamin A, was recently proposed to be an endogenous morphogen. Several retinoids are also potent teratogens. Using an autoradiographic technique, we have identified tissues and cells in early mouse embryos that are able to specifically accumulate a radiolabelled synthetic derivative of retinoic acid. Strong accumulation of radioactivity was seen in several neural crest derivatives and in specific areas of the CNS. Gel filtration analyses of cytosols from embryos that received the radiolabelled retinoid in utero suggested that cellular retinoic acid-binding protein (CRABP) was involved in the accumulation mechanism. Immunohistochemical localization confirmed that cells accumulating retinoids also expressed CRABP. Strong CRABP immunoreactivity was found in neural crest-derived mesenchyme of the craniofacial area, in visceral arches, in dorsal root ganglia and in cells along the gut and the major vessels of the trunk region. In CNS, CRABP expression and retinoid binding was largely restricted to the hindbrain, to a single layer of cells in the roof of the midbrain and to cells in the mantle layer of the neural tube. Our data suggest that cells in the embryo expressing CRABP are target cells for exogenous retinoids as well as endogenous retinoic acid. Retinoic acid may thus play an essential role in normal development of the CNS and of tissues derived from the neural crest. We propose that the teratogenic effects of exogenous retinoids are due to an interference with mechanisms by which endogenous retinoic acid regulates differentiation and pattern formation in these tissues.  相似文献   

8.
9.
10.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

11.
12.
13.
Vitamin A deficiency leads to focal metaplasia of numerous epithelial tissues with altered differentiation from columnar (in general) to stratified squamous cells. This process can be reversed with vitamin A repletion. Previously, we described a system of retinoic acid (RA) synthesis in the cycling rat uterus consisting of cellular retinol binding protein (Crbp), epithelial retinol dehydrogenase (eRoldh), retinal dehydrogenase 2 (Aldh1a2), and cellular retinoic acid binding protein type II (Crabp2). Western blot analysis, RT-PCR, and immunohistochemistry were performed to test whether this retinoic acid synthesis system was also present in other vitamin A sensitive tissues. We found that combinations of Crbp, eRoldh, Aldh1a2 or Aldh1a3, and Crabp2 were present in all vitamin A sensitive tissues examined. In the ureter, while eRoldh was present, another short chain alcohol dehydrogenase reductase (possibly Roldh 1, 2, or 3) was in higher concentration in the transitional epithelia. In several tissues, Crbp, Aldh1a2, and/or Aldh1a3 localized to mesenchyme and/or epithelial cells, while eRoldh and Crabp2 were expressed only in epithelial cells. This suggests that mesenchymal-epithelial interactions may be as important in the adult as they are during development and that local synthesis of RA is important in maintenance of these tissues.  相似文献   

14.
Expression and function of a retinoic acid receptor in budding ascidians   总被引:8,自引:0,他引:8  
 Retinoic acid is thought to induce transdifferentiation of multipotent epithelial stem cells in the developing buds of the ascidian Polyandrocarpa misakiensis. We isolated a cDNA clone from this species, named PmRAR, encoding a retinoic acid receptor (RAR) homologue. PmRAR clusters with other RARs on phylogenetic trees constructed by three different methods. Within the cluster, PmRAR is on a separate branch from all the subtypes of RARs, suggesting that RAR subtypes arose in the ancestral vertebrates after divergence of vertebrates and urochordates. The embryos of another ascidian species Ciona intestinalis were co-electroporated with a mixture of a PmRAR expression vector and a lacZ reporter plasmid containing vertebrate-type retinoic acid response elements. The expression of lacZ depended on the presence of both retinoic acid and PmRAR, suggesting that PmRAR is a functional receptor. PmRAR mRNA is expressed in the epidermis and mesenchyme cells of the Polyandrocarpa developing bud. The mRNA is not detectable in the mesenchyme cells in the adult body wall, but its expression can be induced by retinoic acid in vitro. These results suggest that the PmRAR is a mediator of retinoic acid signalling in transdifferentiation during asexual reproduction of protochordates. Received: 6 April 1998 / Accepted: 27 July 1998  相似文献   

15.
Notch 1, Notch 2, and Notch 3 are three highly conserved mammalian homologues of the Drosophila Notch gene, which encodes a transmembrane protein important for various cell fate decisions during development. Little is yet known about regulation of mammalian Notch gene expression, and this issue has been addressed in the developing rodent tooth during normal morphogenesis and after experimental manipulation. Notch 1, 2, and 3 genes show distinct cell-type specific expression patterns. Most notably, Notch expression is absent in epithelial cells in close contact with mesenchyme, which may be important for acquisition of the ameloblast fate. This reveals a previously unknown prepatterning of dental epithelium at early stages, and suggests that mesenchyme negatively regulates Notch expression in epithelium. This hypothesis has been tested in homo- and heterotypic explant experiments in vitro. The data show that Notch expression is downregulated in dental epithelial cells juxtaposed to mesenchyme, indicating that dental epithelium needs a mesenchyme-derived signal in order to maintain the downregulation of Notch. Finally, Notch expression in dental mesenchyme is upregulated in a region surrounding beads soaked in retinoic acid (50-100 micrograms/ml) but not in fibroblast growth factor-2 (100-250 micrograms/ml). The response to retinoic acid was seen in explants of 11-12-d old mouse embryos but not in older embryos. These data suggest that Notch genes may be involved in mediating some of the biological effects of retinoic acid during normal development and after teratogenic exposure.  相似文献   

16.
The role of gap junctions in patterning of the chick limb bud   总被引:3,自引:0,他引:3  
The role of gap junctional communication during patterning of the chick limb has been investigated. Affinity-purified antibodies raised against rat liver gap junctional proteins were used to block communication between limb mesenchyme cells. Co-injection of the antibodies and Lucifer yellow into mesenchyme cultures demonstrated that communication was inhibited almost immediately. When antibodies were loaded into mesenchyme tissue by DMSO permeabilization, [3H]nucleotide transfer was prevented for at least 16 h. Polarizing region tissue from the posterior limb bud margin causes digit duplications when grafted to the anterior margin. Quail polarizing region cells were loaded with gap junction antibody and grafted into chick wing buds. The antibody had no effect on growth or survival of the grafted cells. As very few polarizing region cells are required to initiate duplications, the number of polarizing region cells in the grafts was reduced by diluting 1:9 with anterior mesenchyme tissue. When either polarizing region or anterior mesenchyme tissue in the graft was loaded separately with antibody, there was little effect on respecification of the digit pattern. However, loading both tissues in the graft caused a significant decrease in duplications. This indicates that a major role of gap junctions in limb patterning may be to enable polarizing region cells to communicate directly with adjacent anterior mesenchyme. A role for gap junctional communication between anterior mesenchyme cells cannot be excluded. The results are discussed in relation to the role of retinoic acid as a putative morphogen.  相似文献   

17.
18.
Non-coding RNAs (ncRNAs) play critical roles in gene regulation. In eukaryotic cells, ncRNAs are processed and/or degraded by the nuclear exosome, a ribonuclease complex containing catalytic subunits Dis3 and Rrp6. The TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex is a critical exosome cofactor in budding yeast that stimulates the exosome to process/degrade ncRNAs and human TRAMP components have recently been identified. Importantly, mutations in exosome and exosome cofactor genes cause neurodegenerative disease. How the TRAMP complex interacts with other exosome cofactors to orchestrate regulation of the exosome is an open question. To identify novel interactions of the TRAMP exosome cofactor, we performed a high copy suppressor screen of a thermosensitive air1/2 TRAMP mutant. Here, we report that the Nab3 RNA-binding protein of the Nrd1-Nab3-Sen1 (NNS) complex is a potent suppressor of TRAMP mutants. Unlike Nab3, Nrd1 and Sen1 do not suppress TRAMP mutants and Nrd1 binding is not required for Nab3-mediated suppression of TRAMP suggesting an independent role for Nab3. Critically, Nab3 decreases ncRNA levels in TRAMP mutants, Nab3-mediated suppression of air1/2 cells requires the nuclear exosome component, Rrp6, and Nab3 directly binds Rrp6. We extend this analysis to identify a human RNA binding protein, RALY, which shares identity with Nab3 and can suppress TRAMP mutants. These results suggest that Nab3 facilitates TRAMP function by recruiting Rrp6 to ncRNAs for processing/degradation independent of Nrd1. The data raise the intriguing possibility that Nab3 and Nrd1 can function independently to recruit Rrp6 to ncRNA targets, providing combinatorial flexibility in RNA processing.  相似文献   

19.
Retinoic acid induces growth arrest and differentiation in B16 mouse melanoma cells. Using gene arrays, we identified several early response genes whose expression is altered by retinoic acid. One of the genes, tbx2, is a member of T-box nuclear binding proteins that are important morphogens in developing embryos. Increased TBX2 mRNA is seen within 2 h after addition of retinoic acid to B16 cells. The effect of retinoic acid on gene expression is direct since it does not require any new protein synthesis. We identified a degenerate retinoic acid response element (RARE) between -186 and -163 in the promoter region of the tbx2 gene. A synthetic oligonucleotide spanning this region was able to drive increased expression of a luciferase reporter gene in response to retinoic acid; however, this induction was lost when a point mutation was introduced into the RARE. This oligonucleotide also specifically bound RAR in nuclear extracts from B16 cells. TBX2 expression and its induction by retinoic acid was also observed in normal human and nonmalignant mouse melanocytes.  相似文献   

20.
Metabolism of retinoids by embryonal carcinoma cells   总被引:4,自引:0,他引:4  
Several embryonal carcinoma (EC) cell lines were tested in culture for their ability to metabolize all-trans-[3H]retinol, all-trans-[3H]retinyl acetate, and all-trans-[3H]retinoic acid. There was little, if any, metabolism of all-trans-retinol to more polar compounds; we failed to detect conversion to acidic retinoids by reverse-phase high performance liquid chromatography and derivatization. We also did not observe [3H]retinoic acid when EC cells were incubated with [3H]retinyl acetate. Unlike the other retinoids, all-trans-[3H]retinoic acid, even at micromolar levels, was almost totally modified by cells from several EC lines within 24 h. Most of the labeled products were secreted into the medium. Some EC lines metabolized retinoic acid constitutively, whereas others had an inducible enzyme system. A differentiation-defective line, which contains little or no cellular retinoic acid-binding protein activity, metabolized retinoic acid poorly, even after exposure to inducers. At least eight retinoic acid metabolites were generated; many contain hydroxyl residues. Our data lead us to propose that retinol does not induce differentiation of EC cells in vitro via conversion to retinoic acid. Also, the relatively rapid metabolism of retinoic acid by EC cells suggests either that the induction of differentiation need involve only a transient exposure to this retinoid or that one or more of the retinoic acid metabolites can also promote differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号