首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improving analytical throughput is the focus of many quantitative workflows being developed for early drug discovery. For drug candidate screening, it is common practice to use ultra-high performance liquid chromatography (U-HPLC) coupled with triple quadrupole mass spectrometry. This approach certainly results in short analytical run time; however, in assessing the true throughput, all aspects of the workflow needs to be considered, including instrument optimization and the necessity to re-run samples when information is missed. Here we describe a high-throughput metabolic stability assay with a simplified instrument set-up which significantly improves the overall assay efficiency. In addition, as the data is acquired in a non-biased manner, high information content of both the parent compound and metabolites is gathered at the same time to facilitate the decision of which compounds to proceed through the drug discovery pipeline.  相似文献   

2.
In vitro metabolic stability studies are performed routinely in drug discovery to determine the rate of metabolism as well as the metabolic fate of compounds. These studies are labor intensive, involving incubation of the compound with a biological matrix, sampling at various time points, stopping the reaction, and sample preparation for analysis. All of these steps involve manual pipetting in the conventional method. An automated method for in vitro metabolism studies is reported here. The method reduces the time and manual labor required and has other advantages, such as better reproducibility and unattended operation. This method utilizes an autosampler custom configured with cooling and incubation capabilities. The autosampler is programmed to directly inject incubation samples at set time points onto an online extraction column. The extracted sample then enters an analytical column for separation and ultimately the mass spectrometer for detection. The injection has the dual function of stopping the reaction and starting the analysis on the LC-MS. This method was used for the metabolic stability study of a prodrug in plasma and liver S9 fractions of five different species. The stability data from the automated method were similar to those obtained using the conventional method. The potential for this method to increase throughput of metabolic stability studies in drug discovery is demonstrated.  相似文献   

3.
Screening of solution stability provides an early alert on potential liabilities of drug candidates so that strategies can be developed to overcome the challenges. A fully automated solution stability assay has been developed to accelerate traditional manual operation. The assay uses the advanced capabilities of a high-performance liquid chromatography instrument that is present in many pharmaceutical research laboratories. The samples are prepared automatically by a temperature-controlled autosampler. The samples are delivered to the stability matrices, mixed, incubated, and injected at selected time points during the reaction time course. This automated process occurs without operator intervention, thus allowing 96 experiments to be run with 0.5 h of a scientist's time compared to 8 h for the same study when performed manually. Automation not only eliminates the manual operation but also improves accuracy and throughput. The assay protocol has been optimized to achieve homogenous mixing and eliminate carryover. The assay is robust, flexible, and high throughput. It can be used to study stability for a large number of samples under multiple incubation conditions and has a wide range of applications in drug discovery and development, such as screening compound stability in biological assay media, obtaining a stability-pH profile, surveying compound stability in physiological fluids, and performing development forced degradation and excipient compatibility.  相似文献   

4.
In vitro cytochrome P450 assays are used in metabolism studies in support of early phases of drug discovery to investigate, e.g., metabolic stability, enzyme inhibition and induction by new chemical entities. LC-UV and LC-fluorescence are traditional analytical tools in support of such studies. However, these tools typically comprise different methods of relatively low throughput for the various metabolites of probe reactions. In recent years, LC-MS methods have been developed to increase throughput. Increased throughput can also be achieved by means of modern chromatographic tools in combination with UV and fluorescence detection. This approach is especially suitable when cytochrome P450 isoforms are investigated by means of single probe incubations. Here, an LC-UV/fluorescence system based on a monolithic porous silica column is described for the analysis of metabolites of nine cytochrome P450 marker reactions [phenacetin to paracetamol (CYP1A2), coumarin to 7-hydroxycoumarin (CYP2A6), paclitaxel to 6alpha-hydroxypaclitaxel (CYP2C8), diclofenac to 4-hydroxydiclofenac (CYP2C9), mephenytoin to 4-hydroxymephenytoin (CYP2C19), bufuralol to 1-hydroxybufuralol (CYP2D6), chlorzoxazone to 6-hydroxychlorzoxazone (CYP2E1), midazolam to 1-hydroxymidazolam (CYP3A4), and testosteron to 6beta-hydroxytestosteron (CYP3A4)]. While offering sensitivities and linear ranges comparable to previously reported methods, the set-up described here provides ease of use and increased throughput with maximum cycle times of 4.5 min.  相似文献   

5.
A simple and flexible setup for conducting drug metabolism studies is described in this report. A heating block was designed for the Multimek liquid handler platform for incubation of multiple samples at 37 degrees C in a 96-well format. This setup enables the rapid performance of drug metabolism experiments on a large number of samples. In this report, the authors present the validation of the system by 1) showing reproducible and consistent determination of the in vitro half-life of midazolam in every well across the entire plate and 2) determination of metabolic parameter values of midazolam, testosterone, diclofenac, warfarin, and dextromethorphan and inhibition parameter values of quinidine and ketoconazole, all comparable to literature values. In addition, the authors demonstrate the application of the setup to determining the metabolic stability of a set of proprietary compounds, the inhibition of activity of cytochrome P450 (CYP) enzymes, and the conduct of a single combination experiment that can simultaneously determine the metabolic stability and CYP inhibition activity. Overall, the system represents a simple, high-throughput and useful tool for drug metabolism screening in drug discovery.  相似文献   

6.
基因芯片技术及应用研究进展   总被引:19,自引:0,他引:19  
采用高速打印或光刻合成技术可在硅片、玻璃或尼龙膜上制造DNA微阵列。样品DNA/RNA通过PCR扩增、体外转录等技术掺入荧光标记分子,与微阵列杂交后通过荧光扫描仪器扫描及计算机分析即可获得样品中大量基因序列及表达的信息。该技术可应用于高通量基因表达平行分析、大规模基因发现及序列分析、基因多态性分析和基因组研究等 。  相似文献   

7.
A need for better clinical outcomes has heightened interest in the use of physiologically relevant human cells in the drug discovery process. Patient-specific human induced pluripotent stem cells may offer a relevant, robust, scalable, and cost-effective model of human disease physiology. Small molecule high throughput screening in human induced pluripotent stem cell-derived cells with the intent of identifying novel therapeutic compounds is starting to influence the drug discovery process; however, the use of these cells presents many high throughput screening development challenges. This technology has the potential to transform the way drug discovery is performed.  相似文献   

8.
The acquisition of reliable kinetic parameters for the characterization of biomolecular interactions is an important component of the drug discovery and development process. While several benchmark studies have explored the variability of kinetic rate constants obtained from multiple laboratories and biosensors, a direct comparison of these instruments' performance has not been undertaken, and systematic factors contributing to data variability from these systems have not been discussed. To address these questions, a panel of ten high-affinity monoclonal antibodies was simultaneously evaluated for their binding kinetics against the same antigen on four biosensor platforms: GE Healthcare's Biacore T100, Bio-Rad's ProteOn XPR36, ForteBio's Octet RED384, and Wasatch Microfluidics's IBIS MX96. We compared the strengths and weaknesses of these systems and found that despite certain inherent systematic limitations in instrumentation, the rank orders of both the association and dissociation rate constants were highly correlated between these instruments. Our results also revealed a trade-off between data reliability and sample throughput. Biacore T100, followed by ProteOn XPR36, exhibited excellent data quality and consistency, whereas Octet RED384 and IBIS MX96 demonstrated high flexibility and throughput with compromises in data accuracy and reproducibility. Our results support the need for a “fit-for-purpose” approach in instrument selection for biosensor studies.  相似文献   

9.
Stability is one of the most important properties of drug candidates. Instable compounds can lead to false positive high‐throughput screening (HTS) hits, incorrect bioassay results, erroneous structure–activity relationships (SAR), low oral bioavailability, drug withdrawal, toxic reactions from degradation products, and difficult formulation development. Screening of stability has been implemented early in drug discovery to identify labile chemotypes and guide structural modification. The most commonly applied stability studies in drug discovery are stability–pH profile, stability in gastrointestinal fluids, stability in bioassay media, excipient compatibility, and prodrug screening. The strategy enhances the quality of drug development candidates and reduces the risks.  相似文献   

10.
Brucella melitensis is a pathogenic Gram-negative bacterium which is known for causing zoonotic diseases (Brucellosis). The organism is highly contagious and has been reported to be used as bioterrorism agent against humans. Several antibiotics and vaccines have been developed but these antibiotics have exhibited the sign of antibiotic resistance or ineffective at lower concentrations, which imposes an urgent need to identify the novel drugs/drug targets against this organism. In this work, metabolic pathways analysis has been performed with different filters such as non-homology with humans, essentially of genes and choke point analysis, leading to identification of novel drug targets. A total of 18 potential drug target proteins were filtered out and used to develop the high confidence protein–protein interaction network The Phosphoribosyl-AMP cyclohydrolase (HisI) protein has been identified as potential drug target on the basis of topological parameters. Further, a homology model of (HisI) protein has been developed using Modeller with multiple template (1W6Q (48%), 1ZPS (55%), and 2ZKN (48%)) approach and validated using PROCHECK and Verify3D. The virtual high throughput screening (vHTS) using DockBlaster tool has been performed against 16,11,889 clean fragments from ZINC database. Top 500 molecules from DockBlaster were docked using Vina. The docking analysis resulted in ZINC04880153 showing the lowest binding energy (?9.1 kcal/mol) with the drug target. The molecular dynamics study of the complex HisI-ZINC04880153 was conducted to analyze the stability and fluctuation of ligand within the binding pocket of HisI. The identified ligand could be analyzed in the wet-lab based experiments for future drug discovery.  相似文献   

11.
Cell viability assays represent an important technology in modern cell biology, drug discovery and biotechnology, where currently there is a high demand for simple, sensitive and cost-effective screening methods. We have developed a new methodology and associated tools for cell-based screening assays, which are based on the measurement of the rates of oxygen uptake in cells by luminescence quenching. Sealable microchamber devices matching the footprint of a standard 96-well plate were developed and used in conjunction with long-decay phosphorescent oxygen probes. These devices permit cell non-invasive, real-time monitoring of cellular respiration and a rapid, one-step, kinetic assessment of multiple samples for cell viability, drug/effector action. These assays can be carried out on conventional fluorescence plate readers, they are suitable for different types of cells, including adherent and slow-respiring cells, require small sample volumes and cell numbers, and are amenable for high throughput screening. Monitoring of as little as 300 mammalian cells in 3 microl volume has been demonstrated.  相似文献   

12.
Chemical denaturant titrations can be used to accurately determine protein stability. However, data acquisition is typically labour intensive, has low throughput and is difficult to automate. These factors, combined with high protein consumption, have limited the adoption of chemical denaturant titrations in commercial settings. Thermal denaturation assays can be automated, sometimes with very high throughput. However, thermal denaturation assays are incompatible with proteins that aggregate at high temperatures and large extrapolation of stability parameters to physiological temperatures can introduce significant uncertainties. We used capillary-based instruments to measure chemical denaturant titrations by intrinsic fluorescence and microscale thermophoresis. This allowed higher throughput, consumed several hundred-fold less protein than conventional, cuvette-based methods yet maintained the high quality of the conventional approaches. We also established efficient strategies for automated, direct determination of protein stability at a range of temperatures via chemical denaturation, which has utility for characterising stability for proteins that are difficult to purify in high yield. This approach may also have merit for proteins that irreversibly denature or aggregate in classical thermal denaturation assays. We also developed procedures for affinity ranking of protein–ligand interactions from ligand-induced changes in chemical denaturation data, and proved the principle for this by correctly ranking the affinity of previously unreported peptide–PDZ domain interactions. The increased throughput, automation and low protein consumption of protein stability determinations afforded by using capillary-based methods to measure denaturant titrations, can help to revolutionise protein research. We believe that the strategies reported are likely to find wide applications in academia, biotherapeutic formulation and drug discovery programmes.  相似文献   

13.
A semi-automatic, high-throughput method has been developed to rapidly assess plasma protein binding of new chemical entities in drug discovery phase. New chemical entities are mixed with plasma and the unbound fractions are separated from the bound fraction by ultrafiltration in a 96-well filtrate assembly. The unbound fractions are then analyzed by fast liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample handling is automated by a robotic system. Employing a cocktail approach where multiple new chemical entities are allowed to bind to plasma proteins in the same well has further increased the throughput. We have validated the method with 12 commercially available compounds. The plasma protein binding data obtained by this method are comparable with the literature values. This method enables the determination of protein binding for 32 compounds in one single experiment instead of 1-2 compounds using the conventional methods.  相似文献   

14.
At present, compound libraries from combinatorial chemistry are the major source for high throughput screening (HTS) programs in drug discovery. On the other hand, nature has been proven to be an outstanding source for new and innovative drugs. Secondary metabolites from plants, animals, and microorganisms show a striking structural diversity that supplements chemically synthesized compounds or libraries in drug discovery programs. Unfortunately, extracts from natural sources are usually complex mixtures of compounds, often generated in time-consuming and, for the most part, manual processes. Because quality and quantity of the provided samples play a pivotal role in the success of HTS programs, this poses serious problems. In order to make samples of natural origin competitive with synthetic compound libraries, we devised a novel, automated sample preparation procedure based on solid-phase extraction (SPE). By making use of modified Zymark (Hopkinton, MA) RapidTrace? SPE workstations, we developed an easy-to-handle and effective fractionation method that generates high-quality samples from natural origin, fulfilling the requirements for an integration in high throughput drug discovery programs.  相似文献   

15.
虚拟筛选与新药发现   总被引:18,自引:0,他引:18  
虚拟筛选是创新药物研究的新方法和新技术,近年来引起了研究机构和制药公司的高度重视,并且已经成为一种与高通量筛选互补的实用化工具,加入到了创新药物研究的工作流程(pipeline)中。本文介绍国际上虚拟筛选及其在创新药物发现中应用的研究进展,特别介绍了我国这方面研究的状况。  相似文献   

16.
Metabolic stability plays an important role in the success of drug candidates. First-pass metabolism is one of the major causes of poor oral bioavailability and short half-life. Traditionally, metabolic stability was evaluated at a later stage of drug discovery and required laborious manual manipulations. With the advance of high-throughput screening, combinatorial chemistry, and early profiling of drug-like properties, automated and rapid stability assays are needed to meet the increasing demand of throughput, speed, and reproducibility at earlier stages of drug discovery. The authors describe optimization of a simple, robust, high-throughput microsomal stability assay developed in a 96-well format. The assay consists of 2 automated components: robotic sample preparation for incubation and cleanup and rapid liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) analysis to determine percent remaining of the parent compound. The reagent solutions and procedural steps were optimized for automation. Variables affecting assay results were investigated. The variability introduced by microsome preparations from different sources (various vendors and batches) was studied and indicates the need for careful control. Quality control and normalization of the stability results are critical when applying the screening data, generated at different times or research sites, to discovery projects.  相似文献   

17.
BACKGROUND: Conventional flow cytometry does not allow the rapid analysis of multiple samples. This has limited its uses in drug discovery, for which the standard for throughput is 100,000 samples per day. METHODS: We describe a simple method in which commercial peristaltic tubing is connected from a commercial autosampler to a flow cytometer. The samples are delivered via a peristaltic pump from source wells in a multiwell plate. The samples are separated by air bubbles. RESULTS: Throughput rates approach the limit of the autosampler (up to 100 wells per minute). Using optimal tubing and flow rates, particles remain within appropriate light scatter and fluorescence gates. The carryover between wells is typically less than 5% without and 1% with a wash step. The volumes of sample delivered are in the microliter scale. The approach has been validated with instruments from three manufacturers. CONCLUSIONS: Flow cytometry has potential throughput of 100,000 samples or more per day starting with the method described. The method is currently best suited to end-point assays. However, combined with high-speed sorting and single- cell assays, the number of assays could approach 1 billion per day.  相似文献   

18.
Abstract

Excessive or inappropriate activation of cell surface receptors can mediate the development of disease. Receptors, therefore, are a focus for drug discovery activities. Empirical screening is important in the search for novel compounds acting at receptors. Technical developments and the application of molecular biology have facilitated access to receptors of interest and have provided efficient screening methods capable of very high throughput. Reliability in high throughput screening requires the use of appropriate methodology, good screen design and effective validation and quality control processes. Validation should aim to establish that the basic experimental design is sound. In developing software to handle high throughput screening data, a fundamental requirement is to provide performance monitoring and error trapping facilities. Additional requirements are automatic data capture from instruments, on-line data reduction and analysis and transfer of results to central databases. As data volumes increase through effective high throughput screening, conventional interrogation methods become less appropriate and are being augmented by newer computing techniques referred to as knowledge mapping or database mining. Targeting cell surface receptors has been very successful as an approach to drug discovery. If the challenges of high throughput empirical screening are addressed effectively, cell surface receptors will provide new opportunities for improved therapy in the coming years.  相似文献   

19.
The development of high‐throughput methods for gene discovery has paved the way for the design of new strategies for genome‐scale protein analysis. Lawrence Livermore National Laboratory and Onyx Pharmaceuticals, Inc., have produced an automatable system for the expression and purification of large numbers of proteins encoded by cDNA clones from the IMAGE (Integrated Molecular Analysis of Genomes and Their Expression) collection. This high‐throughput protein expression system has been developed for the analysis of the human proteome, the protein equivalent of the human genome, comprising the translated products of all expressed genes. Functional and structural analysis of novel genes identified by EST (Expressed Sequence Tag) sequencing and the Human Genome Project will be greatly advanced by the application of this high‐throughput expression system for protein production. A prototype was designed to demonstrate the feasibility of our approach. Using a PCR‐based strategy, 72 unique IMAGE cDNA clones have been used to create an array of recombinant baculoviruses in a 96‐well microtiter plate format. Forty‐two percent of these cDNAs successfully produced soluble, recombinant protein. All of the steps in this process, from PCR to protein production, were performed in 96‐well microtiter plates, and are thus amenable to automation. Each recombinant protein was engineered to incorporate an epitope tag at the amino terminal end to allow for immunoaffinity purification. Proteins expressed from this system are currently being analyzed for functional and biochemical properties. J. Cell. Biochem. 80:187–191, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

20.
疟疾是全球危害最严重的传染性疾病之一,尤其是在非洲,发病率与死亡率仍居高不下。抗药性的出现和发展使大多数现有抗疟药在临床上失去了效用,研究和开发新型抗疟药已成为当前疟疾防治研究的迫切需求。随着恶性疟原虫基因组测序的完成和对疟原虫生物学认知的不断深入,寻找抗疟新靶点的研究得以快速发展。嘧啶生物合成途径是经临床确证有效的抗疟靶点的典范。我们简要综述了近年来以恶性疟原虫嘧啶从头合成途径第四步关键酶——二氢乳清酸脱氢酶(DHODH)为靶点的抗疟新药研究。高通量筛选、药物化学等研究已获得若干对恶性疟原虫DHODH有选择性抑制作用的化合物结构,其中有些在恶性疟原虫体外培养试验中表现出了较强的抗疟作用,且其酶抑制活性与抗疟活性间具有良好的相关性。通过三唑并嘧啶类系列先导化合物的优化研究,已获得了具有良好代谢稳定性、对鼠疟模型有效的类似物。已有大量研究表明DHODH靶向抗疟药的研发具有广阔前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号