共查询到20条相似文献,搜索用时 0 毫秒
1.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC. 相似文献
2.
Characterization and origin of polar dissolved organic matter from the Great Salt Lake 总被引:2,自引:0,他引:2
Jerry A. Leenheer Ted I. Noyes Colleen E. Rostad M. Lee Davisson 《Biogeochemistry》2004,69(1):125-141
Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake. 相似文献
3.
Planktonic heterotrophic bacteria in lakes utilize the labile fraction of dissolved organic carbon (DOC), although information
about seasonal changes in labile DOC in hypertrophic lakes in terms of absolute amount and relative proportion of the total
DOC is still limited. We conducted DOC decomposition experiments using GF/F filtrates in water samples from hypertrophic Furuike
Pond, together with monitoring of DOC concentration and bacterial abundance in water samples from the pond, to examine seasonal
changes in the amount of labile DOC and growth of bacteria on labile DOC. DOC concentrations fluctuated between 2.7 and 11
mg C l−1, and bacterial abundance fluctuated between 1.5 × 106 and 1.0 × 108 cells ml−1. In the DOC decomposition experiment when grazers of bacteria were removed, small portions of DOC (18% ± 12%) were labile
for decomposition by bacteria, and the growth yield of bacteria on labile DOC ranged between 3.3% and 19%. Furthermore, addition
of nitrogen to water samples enhanced bacterial growth. Thus, not only labile DOC but also nitrogen limited bacterial growth
in the pond. Considering the results in the present study together with those of previous studies, bacterial abundance in
Furuike Pond is subjected to bottom-up control, such as by limitation of DOC and nitrogen throughout the year, although top-down
control of bacterial abundance such as by grazing is seasonally important.
Received: May 1, 2001 / Accepted: July 22, 2001 相似文献
4.
Dynamics of dissolved organic carbon concentration (DOC) and capacity toabsorb light (color) are determined by in-lake and external properties andprocesses. In this study, the influence of external factors such as rainfallandsolar radiation on DOC and color dynamics was assessed for a small forestedlake. DOC and absorption coefficients at 440 nm (a440)ranged 4-fold from 0.46 to 1.62 mM and from 3.4 to 14.8m–1, respectively. DOC and a440 variedsynchronously, but an important percentage of the variability (26%) ina440 was not explained by DOC. The resulting twofold variation inthemolar absorption coefficient of DOC suggested significant seasonal changes inchromophoric content. Both DOC and a440 were positive andsignificantly related to cumulative rainfall. Solar radiation, however, onlyappeared to influence a440 dynamics. This influence was mediated byphotobleaching. Photobleaching coefficients (kb) were higher in falland spring relative to the summer. This seasonal variability in kbvalues was related to monthly rainfall. The influence of photobleaching ona440 dynamics was evaluated by comparing the half life ofa440 in the water column with water residence time (WRT). For thestudy lake, photobleaching contributed notably to a440 dynamicsduring the dry periods when WRT was longer than the a440 half life .DOC dynamics, however, were not related to solar radiation becausephotomineralization was considerably slower than photobleaching. 相似文献
5.
Y. Wang Y.P. Hsieh W.M. Landing Y.H. Choi V. Salters D. Campbell 《Biogeochemistry》2002,61(3):269-289
Surface waters in the Florida Everglades contain high levels ofdissolved organic carbon (DOC) compounds. 13C values of DOCsamples collected from the northern Everglades indicate that less than about23%of the DOC was derived from sugarcane (the dominant agricultural crop in thearea), and the amount of DOC from sugarcane was greater during the dry period.Most of the DOC (> 50%) in the northern Everglades was in the low molecularweight (< 1000 Dalton) fraction (LMW-DOC). The relative amount of highmolecular weight DOC (HMW-DOC) was higher in the wet period than in the dryperiod. Radiocarbon ages of the DOC ranged from > modern toabout 2400 years B.P., indicating that DOC was derived from both historic peatdeposits and modern vegetation. At each site, the HMW-DOC had older radiocarbonages than the LMW-DOC, and therefore contained a greater fraction of DOCderivedfrom the historic peat deposits. It appears that at least some of the old DOCcompounds from the historic peat deposits were decomposed during theirresidencein the surface water system in the northern Everglades, and the LMW-DOC wasmoremicrobially labile than the HMW-DOC. Our analysis suggests that accelerateddecomposition of organic matter in the historic peat deposits (due to land-usechange) could be a significant source of DOC and nutrients in the northernEverglades. Our data also suggest that the radiocarbon signature of DOC couldbeused as a sensitive indicator of the overall effectiveness of a wetlandrestoration project. 相似文献
6.
Distribution of dissolved organic carbon and dissolved fulvic acid in mesotrophic Lake Biwa, Japan 总被引:1,自引:0,他引:1
The dissolved organic carbon (DOC) concentrations in mesotrophic Lake Biwa were determined by a total organic carbon (TOC)
analyzer, and DOC molecular size distributions were determined by size exclusion chromatography (SEC) using a fluorescence
detector at excitation/emission (Ex/Em) levels of 300/425 nm with the eluent at pH 9.7. The fluorescence wavelengths for detection
were chosen from the result of excitation–emission matrix spectrometry (EEM) analysis for dissolved fulvic acid (DFA) extracted
from Ado River (peak A, Ex/Em = 260–270/430–440 nm; peak B, Ex/Em = 300–310/420–430 nm). Ado River DFA was eluted with a retention
time (RT) of 7.4–8.9 min and the apparent molecular weight was estimated at 22–87 kDa based on the elution curve for the spherical
protein molecular weight standard. A DFA peak eluted at the same retention time as Ado River DFA also appeared in all the
samples of Lake Biwa water. From the linear relationship between the peak areas with an RT of 7.4–8.9 min by SEC analysis
and DOC values of DFA by TOC analysis of a series of DFA samples (r2 = 0.9995), the concentrations of DFA in the lake water were roughly calculated. DFA was distributed within the range 0.25–0.43 mg C l−1 and accounted for 15%–41% of DOC, with the highest ratios observed at a depth of 70 m in August and the lowest at 2.5 m in
May. 相似文献
7.
B. Michalzik E. Tipping J. Mulder J.F. Gallardo Lancho E. Matzner C.L. Bryant N. Clarke S. Lofts M.A. Vicente Esteban 《Biogeochemistry》2003,66(3):241-264
DyDOC describes soil carbon dynamics, with a focus on dissolved organic carbon (DOC). The model treats the soil as a three-horizon profile, and simulates metabolic carbon transformations, sorption reactions and water transport. Humic substances are partitioned into three fractions, one of which is immobile, while the other two (hydrophilic and hydrophobic) can pass into solution as DOC. DyDOC requires site-specific soil characteristics, and is driven by inputs of litter and water, and air and soil temperatures. The model operates on hourly and daily time steps, and can simulate carbon cycling over both long (hundreds-to-thousands of years) and short (daily) time scales. An important feature of DyDOC is the tracking of 14C, from its entry in litter to its loss as DO14C in drainage water, enabling information about C dynamics to be obtained from both long-term radioactive decay, and the characteristic 14C pulse caused by thermonuclear weapon testing during the 1960s ("bomb carbon"). Parameterisation is performed by assuming a current steady state. Values of a range of variables, including C pools, annual DOC fluxes, and 14C signals, are combined into objective functions for least-squares minimisation. DyDOC has been applied successfully to spruce forest sites at Birkenes (Norway) and Waldstein (Germany), and most of the parameters have similar values at the two sites. The results indicate that the supply of DOC from the surface soil horizon to percolating water depends upon the continual metabolic production of easily leached humic material. In contrast, concentrations and fluxes of DOC in the deeper soil horizons are controlled by sorption processes, involving comparatively large pools of leachable organic matter. Times to reach steady state are calculated to be several hundred years in the organic layer, and hundreds-to-thousands of years in the deeper mineral layers. It is estimated that DOC supplies 89% of the mineral soil carbon at Birkenes, and 73% at Waldstein. The model, parameterised with "steady state" data, simulates short-term variations in DOC concentrations and fluxes, and in DO14C, which are in approximate agreement with observations. 相似文献
8.
Although dissolved organic matter (DOM) released from the forest floor plays a crucial role in transporting carbon and major nutrients through the soil profile, its formation and responses to changing litter inputs are only partially understood. To gain insights into the controlling mechanisms of DOM release from the forest floor, we investigated responses of the concentrations and fluxes of dissolved organic carbon (DOC) and nitrogen (DON) in forest floor leachates to manipulations of throughfall (TF) flow and aboveground litter inputs (litter removal, litter addition, and glucose addition) at a hardwood stand in Bavaria, Germany. Over the two-year study period, litter manipulations resulted in significant changes in C and N stocks of the uppermost organic horizon (Oi). DOC and DON losses via forest floor leaching represented 8 and 11% of annual litterfall C and N inputs at the control, respectively. The exclusion of aboveground litter inputs caused a slight decrease in DOC release from the Oi horizon but no change in the overall leaching losses of DOC and DON in forest floor leachates. In contrast, the addition of litter or glucose increased the release of DOC and DON either from the Oi or from the lower horizons (Oe + Oa). Net releases of DOC from the Oe + Oa horizons over the entire manipulation period were not related to changes in microbial activity (measured as rates of basal and substrate-induced respiration) but to the original forest floor depths prior to manipulation, pointing to the flux control by the size of source pools rather than a straightforward relationship between microbial activity and DOM production. In response to doubled TF fluxes, net increases in DOM fluxes occurred in the lower forest floor, indicating the presence of substantial pools of potentially soluble organic matter in the Oe + Oa horizons. In contrast to the general assumption of DOM as a leaching product from recent litter, our results suggest that DOM in forest floor leachates is derived from both newly added litter and older organic horizons through complex interactions between microbial production and consumption and hydrologic transport. 相似文献
9.
Quantification and characterization of dissolved organic carbon and iron in sedimentary porewater from Green Bay,WI, USA 总被引:3,自引:1,他引:3
Both dissolved organic carbon (DOC) and iron play an important role in biogeochemical processes in lacustrine benthic environments. Moreover, recent evidence has shown that both substances can act as active reductants in the redox transformation of organic pollutants. This paper examines the nature and abundance of DOC and dissolved ferrous iron (FeII) in porewaters from a sediment core collected in Green Bay, WI, USA. The concentration of dissolved FeII and the abundance, absorbance at 280 nm (A
280 nm), molar absorptivities (280 nm), molecular weights, and polydispersities of DOC were measured as a function of depth in porewaters. Dissolved FeII concentrations increased from 3.6 M near the sediment–water interface to 163 M at a depth of 11 cm, then gradually declined. The DOC distribution varied with sediment depth, with the greatest variation in porewater DOC content and properties occurring in the transitional zone between oxic and suboxic conditions. The down-core porewater DOC profile was characterized by an increase in DOC concentration with depth from 0.64 mM OC at 1 cm to 1.23 mM OC at 13 cm, below which it remained relatively constant. A strong correlation was observed between FeII and DOC concentrations, suggesting that these constituents co-accumulate in these porewaters. The correlation between the DOC concentration of the porewaters and A
280 nm was significant, making this parameter a good predictor for DOC concentrations in these waters. The molecular weight distributions of the porewater DOC were primarily monomodal, with relatively low polydispersivities. Weight-average molecular weights ranged from 1505 to 1949 Da. This data set is unique in that it is the first detailed study of a relatively highly resolved DOC profile of benthic porewater in surficial sediment from the Laurentian Great Lakes. 相似文献
10.
This study investigated the properties and sorption by goethite of bulk (unfractionated) dissolved organic matter (DOM) from surface and shallow groundwaters at McDonalds Branch, a small freshwater fen in the New Jersey Pine Barrens (USA). Water samples were collected in the spring and fall seasons from two surface-water sampling sites, an upstream potential recharge area and a downstream discharge area, as well as from a set of in-stream nested wells in the upstream potential recharge area. Changes in DOM concentration, molecular weight distribution, and molar absorptivity at 280 nm were measured. Surface and shallow (1.6 m below land surface) groundwater samples collected in spring 1997 in the potential recharge zone (actual recharge impeded by an extensive clay lens) were found to be very similar in terms of DOM concentrations and physicochemical properties and is believe to originate from a common source. Samples taken in fall 1997 yielded no surface water because of drought conditions, and the shallow groundwater DOM collected from the recharge well contained significantly less and chemically altered DOM. This change in chemical properties is believed to be caused in part by fractionation resulting from sorption to mineral phases. Batch isotherm experiments show that sorption by goethite of the DOM from both spring surface and shallow groundwaters in the potential recharge area were similar, whereas the fall groundwater possessed a much lower affinity for the sorbent. This study demonstrated that shallow groundwaters collected under different climatic and hydrologic conditions (spring, high flow versus fall, drought conditions) resulted in different physicochemical properties and adsorption affinities. 相似文献
11.
水溶性有机质对土壤中镉吸附行为的影响 总被引:67,自引:7,他引:67
水溶性有机质 (DOM)是陆地生态系统和水生生态系统中的一种很活跃的组分 .本文以赤红壤、水稻土和褐土作为供试土壤 ,研究了来源于稻秆和底泥的DOM对土壤中Cd吸附行为的影响 .DOM对土壤中Cd的吸附行为具有明显的抑制作用 .这种抑制作用与土壤类型和DOM种类有关 .在 3种供试土壤中 ,无论添加稻秆DOM还是底泥DOM ,都会使Cd的最大吸附容量和吸附率明显降低 ,其下降幅度为17 3%~ 93 9%.在添加同一种DOM的前提下 ,DOM对Cd吸附的抑制作用均为 :赤红壤 >水稻土 >褐土 .如果不添加DOM ,则土壤对Cd的最大吸附容量主要取决于土壤固相的吸附特性 ,添加DOM后土壤对Cd的最大吸附容量则主要取决于液相中的DOM .由此推断 ,传统的看法 ,通过施用有机肥来固定土壤中的Cd并达到治理重金属污染土壤的观点值得商榷 . 相似文献
12.
Sampling of the central region of the North Sea was carried out to study the spatial and seasonal changes of dissolved and
particulate organic C (DOC and POC, respectively). The surface waters were collected during four cruises over a year (Autumn
2004–Summer 2005). DOC and POC concentrations were measured using high temperature catalytic oxidation methods. The surface
water concentrations of DOC and POC were spatially and temporally variable. There were significantly different concentrations
of DOC and POC between the inshore and offshore waters in winter and summer only, with no clear trend in autumn and spring.
Highest mean concentrations of DOC were measured in spring with lower and similar mean concentrations for other seasons. POC
showed a clear seasonal cycle throughout the year with highest surface mean concentrations found in autumn and spring, but
lowest in winter and summer. The DOC distributions during autumn and spring were strongly correlated with chlorophyll suggesting
extracellular release from phytoplankton was an important DOC source during these two seasons. The lower concentrations of
DOC in summer were probably due to the heterotrophic uptake of labile DOC. The seasonal changes in the C:N molar ratios of
surface DOM (dissolved organic matter) resulted in higher mean C:N molar ratios in spring and lower ratios in winter. These
high ratios may indicate nutrient limitation of heterotrophic uptake immediately after the spring bloom. There is limited
data available for DOC cycling in these productive shelf seas and these results show that DOC is a major component of the
C cycle with partial decoupling of the DOC and DON cycling in the central North Sea during the spring bloom.
Handling editor: Luigi Naselli-Flores 相似文献
13.
Hydrologic pathways through soil affect element leaching by determining the relative importance of biogeochemical processes such as sorption and decomposition. We used stable hydrogen isotopes of water (δD) to examine the influence of flowpaths on soil solution chemistry in a mature spruce–hemlock forest in coastal Oregon, USA. Soil solutions (50 cm depth, n = 13) were collected monthly for 1 year and analyzed for δD, major ions and dissolved organic carbon (DOC) and nitrogen (DON). We propose that the variability of δD can be used as an index of flowpath length and contact time. Throughfall variability in δD was much greater than soil solution variability, illustrating that soil solution integrates the variation in inputs. Lysimeters with greater variation in δD presumably have a greater proportion of flow through rapid flowpaths such as macropores. The variation in soil solution δD for individual lysimeters explained up to 53% of the variation in soil solution chemistry, and suggests that flowpaths influence leaching of some constituents. Soil solutions from lysimeters with greater δD variation had higher DOC and DON (r
2 = 0.51 and 0.37, respectively), perhaps because transport via macropores reduces interaction of DOM with the soil matrix. In contrast, nitrate concentrations were highest in lysimeters with a small variation in δD, where long contact time and low DOC concentrations may yield higher net nitrification. Our results demonstrate the utility of stable isotopes to link flowpaths and soil solution chemistry, and illustrate how the spatial complexity of soils can influence ecosystem-level nutrient losses. 相似文献
14.
Plant species effects on soil nutrient availability are relatively well documented, but the effects of species differences
in litter chemistry on soil carbon cycling are less well understood, especially in the species-rich tropics. In many wet tropical
forest ecosystems, leaching of dissolved organic matter (DOM) from the litter layer accounts for a significant proportion
of litter mass loss during decomposition. Here we investigated how tree species differences in soluble dissolved organic C
(DOC) and nutrients affected soil CO2 fluxes in laboratory incubations. We leached DOM from freshly fallen litter of six canopy tree species collected from a tropical
rain forest in Costa Rica and measured C-mineralization. We found significant differences in litter solubility and nutrient
availability. Following DOM additions to soil, rates of heterotrophic respiration varied by as much as an order of magnitude
between species, and overall differences in total soil CO2 efflux varied by more than four-fold. Variation in the carbon: phosphorus ratio accounted for 51% of the variation in total
CO2 flux between species. These results suggest that tropical tree species composition may influence soil C storage and mineralization
via inter-specific variation in plant litter chemistry. 相似文献
15.
Three-dimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the Lake Biwa watershed 总被引:2,自引:0,他引:2
Khan M. G. Mostofa Takahito Yoshioka Eiichi Konohira Eiichiro Tanoue Kazuhide Hayakawa Mikio Takahashi 《Limnology》2005,6(2):101-115
Quantitative and qualitative characterizations of dissolved organic matter (DOM) were carried out at the watershed level in central Japan by measuring dissolved organic carbon (DOC) concentration and the three-dimensional excitation–emission matrix (3-D EEM). DOC concentration was low (mean 37 ± 19 µM C) in the upstream waters, whereas, in general, it increased toward the downstream areas (mean 92 ± 47 µM C). Significant variations in DOC concentration were detected among rivers and channels. DOC concentration in the epilimnion of Lake Biwa increased during the summer period and decreased during the winter period. The lake hypolimnion has lower DOC concentration (mean 87 ± 7 µM C) compared with the epilimnion (107 ± 15 µM C). Fulvic acid (FA)-like substances in the DOM were directly characterized by 3-D EEM. The fluorescence peak for upstream DOM was found in regions with longer wavelengths (excitation/emission 386 ± 6/476 ± 5 nm) compared with downstream and lake DOM (351 ± 12/446 ± 15 nm and 341 ± 6/434 ± 6 nm, respectively). The DOC concentration is correlated with fluorescence peak intensity of FA-like substances in DOM in river waters. Such a relationship was not found in lake DOM. A blueshift of the fluorescence peak from upstream to lake DOM was observed. A decrease in fluorescence intensities was also detected during the summer period. These results may suggest that the degradation of FA-like substances in DOM occurs from natural solar irradiation. Protein-like fluorescence was significantly detected in the lake epilimnion during the summer period. A linear relationship between DOC concentration and protein-like fluorescence indicated that an autochthonous input of DOM gave rise to the increase in DOC concentration in the lake epilimnion during the summer. These results may suggest that the 3-D EEM can be used as a tool for the investigation of DOM dynamics at the watershed level with concurrent measurement of DOC concentration and the fluorescence properties of fulvic acid-like and protein-like substances. 相似文献
16.
Temporal and spatial distributions of dissolved organic carbon and nitrogen in two small lakes on the Southwestern China Plateau 总被引:6,自引:0,他引:6
Wen Li Fengchang Wu Congqiang Liu Pingqing Fu Jing Wang Yi Mei Liying Wang Jianyang Guo 《Limnology》2008,9(2):163-171
Temporal and spatial distributions of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chlorophyll-a and inorganic nitrogen were investigated in two small mountainous lakes (Lake Hongfeng and Baihua), on the Southwestern China
Plateau, based on almost 2 years’ field observation. DOC concentrations ranged from 163 μM to 248 μM in Lake Hongfeng and
from 143 μM to 308 μM in Lake Baihua, respectively, during the study period. DON concentrations ranged from 7 μM to 26 μM
in Lake Hongfeng and from 14 μM to 47 μM in Lake Baihua. DOC showed vertical heterogeneity with higher concentrations in the
epilimnion than in the hypolimnion during the stratification period. The DON concentration profiles appeared to be more variable
than the DOC profiles. Apparent DON maxima occurred in the upper layer of water. In Lake Hongfeng, DOC concentration in the
surface water was highest at the end of spring and early summer. DON concentration was 2–5 μM higher in May 2003 and in June
2004 than in adjacent months. DOC and chlorophyll-a concentrations were significantly correlated (r = 0.79, P < 0.05). The period of highest concentrations of DOC in Lake Hongfeng was also the season of concentrated rainfall. Algae
activity and allochthonous input might result in an increase of DOC and DON concentrations together. In Lake Baihua, the maximum
concentrations of DOC and DON in the surface water occurred simultaneously in May 2003 and February 2004. DOC concentrations
were significantly correlated with DON (r = 0.90, P < 0.01), indicating the common sources. Allochthonous input, biological processes, stratification and mixing were the most
important factors controlling the distributions and cycling of dissolved organic matter (DOM) and inorganic nitrogen in these
two lakes. Inference from the corresponding vertical distributions of DOM and inorganic nitrogen indicated that DOM played
potential roles in the internal loading of nitrogen and metabolism in the water body in these small lakes. The carbon/nitrogen
(C/N) ratio showed a potential significance for tracing the source and biogeochemical processes of DOM in the lakes. These
results are of significance in the further understanding of biogeochemical cycling and environmental effects of DOM and nitrogen
in lake ecosystems. 相似文献
17.
淹水培养条件下土壤微生物生物量碳、氮和可溶性有机碳、氦的动态 总被引:2,自引:0,他引:2
以洞庭湖区2个典型水稻土(红黄泥和紫潮泥)为对象,研究了25℃、淹水培养条件下稻草-硫铵配施和单施硫铵处理土壤微生物生物量碳、氮(SMBC、SMBN)和可溶性有机碳、氦(SDOC、SDON)的动态变化.结果表明,SMBC、SMBN和SDOC、SDON在培养前期达到峰值,之后降低,并趋于稳定.添加底物后,2种土壤不同处理土壤微生物生物量碳与有机碳(SMBC/TC)和土壤微生物生物量氮与全氮(SMBN/TN)的平均值都在2%-3%之间变化;可溶性碳与全碳(SDOC/TC)的平均值为1%左右,可溶性氮与全氮(SDON/TN)平均值为5%-6%.2种土壤中SMBC峰值单施硫铵处理最大,但与稻草-硫铵配施处理差异均不显著;SMBN、SDOC和SDON峰值稻草-硫铵配施最大.稻草.硫铵配施与单施硫铵处理中,低肥力红黄泥的SMBN、SDOC和SDON峰值差异显著;而高肥力紫潮泥SMBN和SDOC峰值差异不显著.前7d,SMBC/SMBN〈10;14d后,同一时刻单施硫铵处理SMBC/SMBN〉稻草.硫铵配施.不同处理的SDOC!SDON3d时最大.28d时最小. 相似文献
18.
The fluorescence properties of dissolved organic matter (DOM) in the water of Lake Fuxian and its adjacent rivers on the Yunnan Plateau, southwestern China, were studied to specify the characterization of DOM in the lake and river waters. The fluorescence properties with the excitation–emission matrix in the water of Lake Fuxian are different from those in the river water. The differences in these properties between the lake and river water could arise not only from their sources but also from the reactivity of the photobleaching of DOM. In the lake, the supplying of allochthonous fluorescent materials from inflowing rivers to the fluorescent DOM is less significant than the photobleaching of fluorescent substances. 相似文献
19.
1. A microcosm experiment was performed to test the impacts of Cognettia sphagnetorum on carbon leaching in a cambic stagnohumic gley soil.
2. Leaching of dissolved organic carbon (DOC) was significantly enhanced by C.sphagnetorum, with the greatest effect being found in the upper, 0–6 cm, soil layers. The ratio of DOC to dissolved organic nitrogen (DON) in the leachate decreased in faunated systems, indicating that the enchytraeids were mobilizing carbon from organic matter with a low C to N ratio.
3. The vertical distribution of the enchytraeids had an effect on the production of DOC, and this vertical distribution is affected strongly by climate. It is proposed that increases in DOC found in a field soil-warming experiment with the same soil are largely a result of changes in the vertical distribution of these organisms. 相似文献
2. Leaching of dissolved organic carbon (DOC) was significantly enhanced by C.sphagnetorum, with the greatest effect being found in the upper, 0–6 cm, soil layers. The ratio of DOC to dissolved organic nitrogen (DON) in the leachate decreased in faunated systems, indicating that the enchytraeids were mobilizing carbon from organic matter with a low C to N ratio.
3. The vertical distribution of the enchytraeids had an effect on the production of DOC, and this vertical distribution is affected strongly by climate. It is proposed that increases in DOC found in a field soil-warming experiment with the same soil are largely a result of changes in the vertical distribution of these organisms. 相似文献
20.
Weekly measurements during the open season at five stations on a small Ontario stream system showed that the size distribution of fine particles in the water varied irregularly. In general, rainfall increased their total amount and also the concentration of dissolved organic carbon. Clearly other local factors affect the supply of particles, and each reach behaves individually and may react differently to successive storms. The behaviour of dissolved material is more predictable, and it is clear that much is rapidly removed from solution. It was shown that high concentrations of particles are associated with high amounts of plant pigments, carbohydrate, and protein. Similarly dissolved carbohydrate and protein are raised when rain increases dissolved organic carbon. These findings suggest a series of mechanisms by which a woodland stream may trap woodland produced energy and cycle it through the aquatic system.This work was supported by a research grant from the National Research Council of Canada to H. B. N. Hynes. 相似文献