首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TENA, a selective kappa opioid receptor antagonist   总被引:3,自引:0,他引:3  
A number of opioid antagonists (TENA, naloxone, Mr 2266, WIN 44441) were evaluated for their selectivity in antagonizing the effect of mu, kappa, and delta agonists in the guinea pig ileum (GPI) and mouse vas deferens (MVD) preparations. Among these four antagonists, TENA was the most potent and the only ligand which was selective for kappa receptors. In this regard TENA was approximately 27-times more effective in antagonizing the kappa agonist, U-50488H, relative to the mu agonist, morphine, and it was about 5-times more effective against ethylketazocine (EK) relative to morphine. At the same concentration (20 nM) TENA did not significantly antagonize the delta agonist, [D-Ala2,D-Ala5]enkephalin (DADLE), in the MVD. Also, TENA was more effective than naloxone, EK, or U-50488H in protecting kappa receptors from irreversible blockage by beta-CNA. The results of this study indicate that TENA is the most selective kappa antagonist yet reported.  相似文献   

2.
Mice were rendered dependent on morphine by mixing morphine with their food (2 mg/g) for three days. Increasing doses of naloxone precipitated dose-dependent withdrawal reactions such as weight loss and jumping. These withdrawal reactions were antagonized by morphine pretreatment. Effects of morphine, such as increased locomotor activity, inhibition of intestinal transport, and analgesia were antagonized by naloxone in both non-dependent and dependent subjects. The antagonist actions of naloxone were increased in dependent subjects; lower doses of naloxone were sufficient to antagonize effects of morphine. The present results confirm earlier studies indicating that precipitation of withdrawal can be antagonized by morphine pretreatment suggesting that withdrawal reactions are due to actions of naloxone at the same receptor at which opioid agonists act. The increased antagonist potency of naloxone in dependent subjects extends earlier results obtained with analgesic effects to several other agonist effects of morphine and is consistent with the interpretation that exposure to an opioid agonist induces a change in the conformation of opioid receptors.  相似文献   

3.
A large body of evidence has suggested a role for the endogenous opiates and their receptors in the regulation of appetite. In this study we have examined the relative effects of ketocyclazocine (KC), cyclazocine and ethylketocyclazocine, all putative kappa opiate receptor agonists, and morphine, a putative mu receptor agonist, on food consumption. All the kappa agonists induced feeding when administered at 8 AM as did morphine. KC failed to induce feeding during the nocturnal feeding period (2000 and 0200 hours) and morphine suppressed feeding at these times. KC and morphine suppressed starvation induced feeding when food was made available immediately after injection and had no effect when food was presented 2 and 4 hours after injection. High doses of naloxone (5 mg/kg) suppressed KC induced feeding while actually enhancing high dose morphine (25 mg/kg) induced feeding. Repeated injections of KC or morphine for 5 days resulted in enhancement of the feeding response with initiation of feeding occuring earlier. Taken together with the studies showing that the endogenous kappa ligand, dynorphin, enhabces feeding the most parsimonious interpretation of these studies is that kappa agonists are endogenous initiators of feeding and that kappa receptors are maximally saturated at times of food deprivation and during spontaneous feeding. The mu (or one of the other) opiate receptors inhibit feeding due to their sedative effect and antagonism of this effect leads to enhancement of the feeding response. It is postulated that kappa opiate receptors represent an important component of the natural feeding drive.  相似文献   

4.
C Chavkin  A Goldstein 《Life sciences》1982,31(16-17):1687-1690
Spare opiate receptors in the guinea pig ileum have been detected by the use of the opiate receptor alkylating agent beta-chlornaltrexamine (CNA). Treatment of the guinea pig ileum longitudinal muscle in vitro with low concentrations (less than 10nM) of CNA resulted in an irreversible parallel shift to the right of the normorphine log concentration response curve. With increasing concentration of the reagent, the agonist EC50 becomes progressively greater. Finally a point is reached at which the maximal agonist effect decreases, so that parallelism is no longer seen. The maximal parallel shift provides a measure from which one can estimate the spare receptor fraction that is present in untreated tissue. In ilea from normal guinea pigs, roughly 80-90% of the opiate receptors for normorphine were found to be spare. Even after the largest parallel shifts that could be achieved, the naloxone Ke value for antagonism was unchanged, indicating that normorphine acts through spare mu receptors. Ilea from guinea pigs made tolerant by chronic morphine pellet implantation were found to be more sensitive to the effects of CNA treatment; there was a reduction in the number of spare receptors for normorphine. It is suggested that the opiate spare receptor fraction is physiologically modulated to control neuronal sensitivity to opioid effect.  相似文献   

5.
Intraperitoneal administration of n-dipropylacetate (DPA) to naive rats produced abstinence behaviour including shaking, digging, hunchback posture, piloerection and ptosis during 15 min and increased motor activity considerably. Treatment with a subconvulsive dose of the GABA antagonist bicuculline suppressed this DPA-induced abstinence behaviour, indicating that GABA was increased at receptor sites. Also morphine in a low dose of 1 mg/kg suppressed this behaviour, while administration of naloxone after morphine treatment could release the abstinence behaviour. Simultaneous treatment with morphine and naloxone or naloxone alone were without effect. The administration to DPA treated rats of doses higher than 1 mg/kg morphine resulted in a severe depression of motor activity. It is concluded that an increased availability of GABA at its receptor sites plays an important role in the behaviour observed after DPA administration. The experiments with morphine and naloxone suggest that morphine receptors are involved in DPA-induced abstinence behaviour.  相似文献   

6.
BackgroundG protein-coupled receptors (GPCRs) comprise a family of membrane proteins that can be activated by a variety of external factors. The μ-opioid receptor (MOR), a class A GPCR, is the main target of morphine. Recently, enhanced sampling molecular dynamics simulations of a constitutively active mutant of MOR in its apo form allowed us to capture the novel intermediate states of activation, as well as the active state. This prompted us to apply the same techniques to wild type MOR in complex with ligands, in order to explore their contributions to the receptor conformational changes in the activation process.MethodsMOR was modeled in complex with agonists (morphine, BU72), a partial agonist (naloxone benzoylhydrazone) and an antagonist (naloxone). Replica exchange with solute tempering (REST2) molecular dynamics simulations were carried out for all systems. Trajectory frames were clustered, and the activation state of each cluster was assessed by two different methods.ResultsCluster sizes and activation indices show that while agonists stabilized structures in a higher activation state, the antagonist behaved oppositely. Morphine tends to drive the receptor towards increasing R165-T279 distances, while naloxone tends to increase the NPxxYA motif conformational change.ConclusionsDespite not observing a full transition between inactive and active states, an important conformational change of transmembrane helix 5 was observed and associated with a ligand-driven step of the process.General significanceThe activation process of GPCRs is widely studied but still not fully understood. Here we carried out a step forward in the direction of gaining more details of this process.  相似文献   

7.
Ethylene controls many aspects of plant growth and development. Signaling by the gaseous phytohormone is initiated by disulfide-linked membrane-bound receptors, and the formation of heteromeric receptor clusters contributes to the broad range of ethylene responsiveness. In Arabidopsis thaliana, the TCS-like ethylene receptors interact with the cytosolic serine/threonine kinase constitutive triple response 1 (CTR1), a proposed mitogen-activated protein kinase kinase kinase. In the absence of the hormone, the receptor and therefore CTR1 are active. Hence, ethylene acts as an inverse agonist of its signaling pathway. The three-dimensional structures of the active, triphosphorylated and the unphosphorylated, inactive kinase domain of CTR1 in complex with staurosporine illustrate the conformational rearrangements that form the basis of activity regulation. Additionally, in analytical ultracentrifugation experiments, active kinase domains form back-to-back dimers, while inactive and activation loop variants are monomers. Together with a front-to-front activation interface, the active protein kinase dimers thereby engage in interactions that promote CTR1-mediated cross talk between ethylene receptor clusters. This model provides a structural foundation for the observed high sensitivity of plants to ethylene.  相似文献   

8.
Kim KW  Son Y  Shin BS  Cho KP 《Life sciences》2001,68(11):1305-1315
Naltriben (NTB) has been used to differentiate the subtypes of delta opioid receptors, delta1 and delta2. However, there is considerable evidence suggesting that NTB may act on other types of opioid receptors too. We examined the effects of NTB on the specific binding of radiolabeled ligands for opioid mu and kappa2 receptors, and the effects on the release of [3H]norepinephrine ([3H]NE) in rat cerebral cortex slices. NTB displaced the specific binding of [3H]DAMGO with Ki value of 19.79 +/- 1.12 nM in rat cortex membranes. Specific binding of [3H]diprenorphine ([3H]DIP) was inhibited by NTB with Ki value of 82.75 +/- 6.32 nM in the presence of DAMGO and DPDPE. High K+ (15 mM)-stimulated release of [3H]NE was attenuated by DAMGO in rat cerebral cortex slices. NTB (30 nM) shifted the dose-response curve of DAMGO to the right and attenuated the maximal effect. In the meantime, NTB inhibited high K+-stimulated [3H]NE release at concentrations above 100 nM. The inhibitory effect of NTB was not attenuated by CTAP (10 nM) and naloxone (3 nM) but by higher concentration of naloxone (30 nM), nor-BNI (300 nM) and bremazocine (3 nM). These results indicate that NTB, depending on the dosage, could acts not only as an antagonist at delta but also as a noncompetitive antagonist for mu receptors, and as an agonist for kappa2 receptors in rat cerebral cortex.  相似文献   

9.
Kappa receptor mediated opioid dependence in rhesus monkeys   总被引:1,自引:0,他引:1  
D E Gmerek  J H Woods 《Life sciences》1986,39(11):987-992
The kappa receptor-selective agonist U-50, 488 was administered chronically to rhesus monkeys. Tolerance developed to the overt behavioral effects of U-50,488 without cross-tolerance to morphine. Withdrawal behaviors produced by deprivation, naloxone or quadazocine administration in U-50, 488-dependent monkeys consisted of hyperactivity, excessive grooming, and yawning. The syndrome was suppressed in a dose-related manner by a kappa agonist, ethylketazocine, but not by doses of morphine that suppressed its own withdrawal. The mu-selective antagonist, beta-funaltrexamine, at doses which are active in morphine-dependent monkeys, did not precipitate withdrawal in U50, 488-dependent monkeys. Dependence, which is the result of activity at the kappa receptor, was distinct from morphine dependence.  相似文献   

10.
Opioid peptides are the most effective drugs in controlling pain; their action is elicited by binding to specific membrane receptors. The gastrointestinal tract represents, after the nervous system, the site in which the opioid receptors are expressed at high levels. The opioid agonist morphine has a significant inhibitory effect on intestinal motility, this action is blocked by naloxone an opioid antagonist mainly active at mu and kappa receptors. In this study the presence of mu opioid receptor on rabbit jejunum was investigated by western blot. The effects of beta-endorphin, the endogenous opioid peptide with the highest affinity to the mu opioid receptor and those of naloxone on spontaneous rabbit jejunum contractions were evaluated. Beta-endorphin (10(-6) M) showed a relaxant effect on jejunum contractility while naloxone showed a dual effect inducing an increase of spontaneous contractility at low concentrations (10(-6) M, 10(-7) M, 10(-8) M) and a decrease when high concentrations (10(-3) M, 10(-4) M, 10(-5) M) were utilized. The obtained results demonstrate that mu opioid receptor is expressed in rabbit jejunum and suggest that this receptor may be involved in mediating the effects of both opioid agonist and antagonist on jejunum contractions.  相似文献   

11.
Intracerebral administration of cyclo (His-Pro), the postulated metabolite of thyroliberin (TRH, pGlu-His-Pro-NH2) inhibited the naloxone induced withdrawal responses in morphine dependent mice. Mice were rendered dependent on morphine by the subcutaneous implantation of a pellet (containing 75 mg of morphine free base) for three days. Six hours after pellet removal, the naloxone ED50 for the jumping response was found to be higher in mice injected with cyclo (His-Pro) compared with that of vehicle controls. Similarly, the hypothermic response observed following 50 μg/kg of naloxone given given 6 h after pellet removal or that seen with 100 μg/kg of naloxone given 24 h after pellet removal from morphine-dependent mice was inhibited by cyclo (His-Pro). Previously, we have shown similar results with TRH on the morphine abstinence syndrome. It appears, therefore, that cyclo (His-Pro) may be the active metabolite of TRH and analogs of cyclo (His-Pro) may be useful in blocking the symptoms of the opiate abstinence syndrome.  相似文献   

12.
反向激动剂:受体研究中的一个新发现   总被引:1,自引:0,他引:1  
静息时就有一部分受体处于激活性状它们与非激活状态的受体处于动态平衡状态之中。某些原来认为的受体拮抗对R的亲和性远远高于对R的亲和性,导致动态平衡中的R数量减少,因而产生生物效应,对某些受体突变或爱 体过度表达引起的疾病,反向激动剂具有应用前景。  相似文献   

13.
The inhibition by opiates of the PGE2-induced formation of cAMP in slices from rat brain striatum was investigated. A maximal, 3.5-fold increase over the basal level of cAMP was obtained with an EC50 for PGE2 of 3 microM. Opiate agonists of both mu and kappa type were inhibitory. The IC50 values for morphine, levorphanol and ethylketocyclazocine (EKC) were 110 nM, 80 nM and 25 nM, respectively. These values were similar to the potencies of the compounds in displacing stereospecifically bound 3H-etorphine in rat brain membranes. As evidenced by the inactivity of dextrorphan, the inhibition of PGE2-dependent cAMP formation was stereospecific. Also ineffective were the opiate antagonists naloxone, naltrexone and MR 2266. These compounds did, however, reverse the inhibition by agonists, displaying thereby selectivity toward the putative mu and kappa opiates. Thus, the inhibition by morphine was antagonized to a greater degree by naloxone than by MR 2266, and the action of EKC was blocked more effectively by MR 2266 relative to naloxone.  相似文献   

14.
D L Francis  A C Roy  H O Collier 《Life sciences》1975,16(12):1901-1906
Naive or morphine-dependent rats received a single subcutaneous injection of a phosphodiesterase inhibitor; their behavioral responses were then recorded after a small subcutaneous dose of naloxone. In naive rats, the potent phosphidiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) produced acutely a state in which a small dose of naloxone (0.03 to 1.0 mg/kg subcutaneously) precipitated a quasi-morphine abstinence syndrome that was difficult to distinguish from the true abstinence syndrome, precipitated by the same dose of naloxone in rats made dependent on morphine. IBMX also intensified the true morphine abstinence syndrome. The potency with which IBMX, theophylline, caffeine and RO 20–1724 exerted these effects corresponded with their potency as inhibitors of cyclic-3′, 5′-AMP phosphodiesterase in rat brain homogenate. These and previous findings indicate that: (i) morphine-abstinence effects express increased activity of a central cyclic AMP mechanism; and (ii) naloxone can potently stimulate behavior in animals not treated with any opiate drug.  相似文献   

15.
1. The terrestrial snail, Cepaea nemoralis, when placed on a warmed surface (40 degrees C) displays a thermal avoidance behaviour that entails an elevation of the anterior portion of the fully extended foot. The latency of this nociceptive response was increased by the prototypical mu and specific kappa opiate agonists, morphine and U-50, 488H, respectively, in a manner indicative of anti-nociception and the induction of 'analgesia'. Pretreatment with the prototypical opiate antagonist, naloxone, blocked the morphine- and reduced the U-50, 488H-induced analgesia. Naloxone had no effects on the thermal response latencies of saline treated animals. 2. Exposure to either cold (7 degrees C) or warm (38 degrees C) temperature stress increased the nociceptive thresholds of Cepaea in a manner indicative of the induction of 'stress-induced analgesia'. The warm stress-induced analgesia was opioid mediated, being blocked by naloxone, whereas, the cold stress-induced analgesia was insensitive to naloxone. 3. Exposure for 15-30 min to 0.5 Hz weak rotating magnetic fields (1.5-8.0 G) significantly reduced the analgesic effects of the mu and kappa opiate agonists in a manner similar to that observed with naloxone. The magnetic stimuli also inhibited the endogenous opioid mediated warm stress-induced analgesia and significantly reduced the cold stress-induced analgesia. The magnetic stimuli had no evident effects on the nociceptive responses of saline-treated animals. The dihydropyridine (DHP) and non-DHP calcium channel antagonists diltiazem, verapamil. and nifedipine differentially and significantly reduced, while the DHP calcium channel agonist, BAY K8644, significantly enhanced the inhibitory effects of the magnetic fields on morphine-induced analgesia.  相似文献   

16.
Four experiments were performed to evaluate a possible opioid involvement in the regulation of sexual behavior (amplectic clasping of a female) in intact adult male rough-skinned newts (Taricha granulosa) during the breeding season. It was found that an ip injection of bremazocine, a kappa-receptor opiate agonist, can markedly reduce sexual activity and that an ip injection of naloxone can reverse this inhibition in a dose-dependent fashion. In contrast, in male newts that were sexually inactive before treatment, injections of naloxone failed to induce sexual behavior, suggesting that opioid mechanisms do not normally exert a tonic inhibition of amphibian sexual behavior. In addition, an injection of ethylketocyclazocine (another kappa-receptor agonist), but not morphine (a mu-receptor agonist) suppressed sexual behaviors of male newts. These results indicate that opioid mechanisms that include kappa-type opioid receptors may contribute to the regulation of sexual behavior in nonmammalian vertebrates.  相似文献   

17.
The role of HSP90 in stabilization of oncogenic tyrosine kinases made it an attractive therapeutic target for treating cancer but the molecular basis underlying the interaction between the HSP90 chaperone and client kinases is not elucidated yet. Using kinase inhibitors we show that the inactive conformation of ERBB2 does not interact with HSP90 chaperone and is thus not amenable to degradation upon HSP90 inhibitor treatment, while active ERBB2 kinase conformation promotes interaction with the HSP90 machinery and thus is degraded upon HSP90 inhibitor treatment. Interestingly, the kinase-chaperone interaction is disrupted in case of BCR-ABL and FLT3-ITD when bound to inhibitors irrespective of whether they block the kinase in an active or inactive conformation and thus our results indicate that the stability of the active kinase conformation varies between different kinases.  相似文献   

18.
To analyse the interaction between endogenous opioid systems and brain reward, the influence of repeated treatment for 3 weeks with morphine and the opioid antagonist naloxone was investigated in rats with self-stimulation electrodes in the ventral tegmental area. Changes in threshold of self-stimulation determined by a response rate insensitive two lever method were considered as changes in reward. Morphine induced a temporary decrease of the response rate which lasted 3 days, and decreased the threshold for self-stimulation. The effect on threshold remained present till morphine treatment was discontinued, indicating that tolerance does not develop to this effect of morphine. Repeated naloxone treatment gradually increased the threshold for self-stimulation. This effect persisted after discontinuation of naloxone treatment. It is concluded that blockade of opioid receptors induces long term changes in the setpoint of self-stimulation reward.  相似文献   

19.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   

20.
We have developed an inducible HEK293/Tet-On cell line that transiently expresses both FLAG-tagged human angiotensin II type-I receptors (FLAG-hAT(1)R) and G(q)alpha G protein subunits in response to doxycycline. High and tightly regulated levels of FLAG-hAT(1)R (740+/-57 fmol/mg protein) and G(q)alpha (36-fold increase compared with non-induced cells) overexpression were consistently achieved. We investigated the possibility of using an inducible system to increase the proportion of constitutively active wild-type FLAG-hAT(1)Rs by overexpressing G(q)alpha. Following doxycycline treatment, we observed no significant change in the apparent binding affinity or potency (coupling efficiency) of angiotensin II, though significant increases in the intrinsic activity of several partial agonists were observed, indicative of constitutive activity. DUP753 (10 microM), a suggested inverse agonist, did not inhibit the enhanced level of basal (agonist-independent) activity. The data suggest that the resting equilibrium of hAT(1) receptors between the inactive (R) and active (R*) forms is predominantly weighted towards the inactive conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号