首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of dehydroepiandrosterone (DHEA), a steroid hormone of the adrenal cortex which acts as a peroxisome proliferator and hepatocarcinogen in the rat, caused an increase in NADPH-dependent lipid peroxidation in mitochondria isolated from the liver, kidney and heart, but not from the brain. The effect of DHEA on rat liver mitochondrial lipid peroxidation became discernible after feeding steroid-containing diet (0.6% w/w) for 3 days, and reached maximal levels between 1 and 2 weeks. DHEA in the concentration range 0.001–0.02% did not significantly increase lipid peroxidation compared to the control. Lipid peroxidation was significantly enhanced in animals given a diet containing ≥ 0.05% DHEA. The addition of DHEA in the concentration range 0.1–100 μM to mitochondria isolated from control rats had no effect on lipid peroxidation. It seems, therefore, that the steroid effect is mediated by an intracellular process. Our data indicate that induction of mitochondrial membrane lipid peroxidation is an early effect of DHEA administration at pharmacological doses.  相似文献   

2.
Dehydroepiandrosterone (DHEA) and its sulfonated form dehydroepiandrosterone sulfate (DHEAS) are the main circulating steroid hormones and many epidemiological studies show an inverse relationship between DHEA/DHEAS levels and muscle loss for which the primary cause is the accelerated protein breakdown. The aim of this work was to determine whether DHEA/DHEAS supplementation in differentiating C2C12 skeletal muscle cells might influence the expression of the atrophy-related ubiquitin ligase, MuRF-1, and thereby impact key molecules of the differentiation program. DHEA is the prohormone crucial for sex steroid synthesis, and DHEAS is thought to be its reservoir. However, our preliminary experiments showed that DHEAS, but not DHEA, is able to influence MuRF-1 expression. Therefore, we treated differentiating C2C12 cells with various concentrations of DHEAS and analyzed the expression of MuRF-1, Hsp70, myosin heavy chain (MHC), myogenin, and the activity of creatine kinase. We observed that DHEAS at physiological concentrations downregulates MuRF-1 expression and affects muscle differentiation, as shown by the increased levels of MHC, which is a sarcomeric protein that undergoes MuRF-1-dependent degradation, and also by an increase in creatine kinase activity and myogenin expression, which are two other well-known markers of differentiation. Moreover, we found that DHEAS might have a protective effect on differentiating cells as suggested by the augmented levels of Hsp70, a member of heat shock proteins family that, besides its cytoprotective action, seems to have a regulatory role on key atrophy genes such as MuRF-1. In conclusion, our data shed light on the role of DHEAS at physiologic concentrations in maintaining muscle mass.  相似文献   

3.
Dehydroepiandrosterone (DHEA) is an adrenal androgen whose function is poorly understood. Although DHEA and DHEA sulfate (DHEAS) are secreted in relatively high quantities by the human adrenal, the laboratory rat secretes very little, thus hindering experimental studies of the hormone. In this paper, we measured the changes in serum DHEA and DHEAS under various physiological conditions in golden hamsters. Evening serum DHEAS fell from 6.30 +/- 0.78 microg/dl (mean +/- SE) before surgery to 3.03 +/- 0.23 microg/dl 12 days after bilateral adrenalectomy. Hamsters had higher levels of DHEA and DHEAS in the evening than in the morning, but removal of the gonads did not consistently decrease serum DHEA or DHEAS in males or females. Evening levels of DHEA and DHEAS reached a peak around 7 weeks of age and then gradually decreased to about one-third of these levels by one year of age. These results suggest that DHEA and DHEAS are secreted at least in part from the hamster adrenal, that they do not originate from the gonads, and that there is a daily rhythm with peak levels at a time of day just preceding the active phase. In addition, the levels of these hormones decrease with aging.  相似文献   

4.
In order to ascertain the kinetics of absorption and metabolism of transdermally administered dehydroepiandrosterone (DHEA), 10 men 29-72 years old (mean 52.4+/-14.5) received 50 mg DHEA/day in a gel applied onto the skin of the abdomen for 5 consecutive days. The objective was to establish the extent to which DHEA influences the levels of gonadotropins, sex hormone-binding globulin and lipids. It was found that DHEA is well absorbed and rapidly metabolized to its sulfate (DHEAS), androstenedione, and consequently to testosterone and estradiol. The DHEA levels that markedly increased after the first doses gradually declined already during the application, and this decline proceeded even after it was discontinued, reaching levels significantly lower than the original ones. On the other hand, the levels of DHEA metabolites (with the exception of DHEAS) rose during the application and reached values significantly higher than the basal ones within 5 weeks. This effect was accompanied by significantly decreased levels of LH. The serum levels of lipids, namely of cholesterol (both HDL and LDL cholesterol), triglycerides, apolipoproteins A-I and B and lipoprotein(a) after DHEA application were not changed significantly, and the atherogenic index (AI) remained unaltered. However, some correlations between hormones and lipids were found. Negative correlations concerned the following indices: DHEA/Lp(a); DHEAS/cholesterol; DHEA, DHEAS, testosterone/TG; testosterone/AI. On the other hand, LH, FSH/cholesterol, FSH, SHBG/LDL cholesterol, FSH/Apo B, Lp(a) correlated positively. It can be concluded that transdermal short-time application of DHEA results in a decrease of endogenous DHEA after finishing the treatment, with a parallel marked increase in the levels of sex hormones. Using this application protocol, exogenous DHEA neither altered the lipid spectrum, nor did it influence the atherogenic index.  相似文献   

5.
H Sekihara  N Osawa  H Ibayashi 《Steroids》1972,20(6):813-824
A radioimmunoassay for serum dehydroepiandrosterone sulfate (DHEAS) (1) has been developed using anti-DHEA antiserum obtained by immunizing rabbits with DHEA-17 oxime-bovine serum albumin. Serum volume of 0.01 to 0. 1 ml was used for analysis. After the addition of ammonium salt of DHEA-73 H sulfate for recovery and a preliminary removal of DHEA, DHEAS was extracted as pyridinium salt by methylene chloride. The dried extract was subjected to solvolysis (Burstein & Lieberman), followed by paper chromatography. The eluates and DHEA-7 3H which was added to determine the % free of DHEA were evaporated and incubated with the antiserum containing pepsin treated human immune serum globulin and bovine serum albumin at 37°C for 1 hour. Ammonium sulfate was used to separate free from bound DHEA. The accuracy, precision and specificity were satisfactory. The sensitivity was 3 ng per sample. The blank values could not be differentiated from zero. Although the antiserum reacts with the other 3βOHΔ5 steroids as well as DHEA, the complete separation of DHEA from the other 3βOHΔ5 steroids was achieved chromatographically. Serum DHEAS levels in normal subjects and patients with adrenocortical disorders obtained with the radioimmunoassay were comparable to those obtained with gasliquid chromatography.  相似文献   

6.
Several endogenous hormones have been proven to stimulate cancer growth, whereas at present very few hormones are known to display oncostatic activity. The most widely investigated antitumor hormone is the pineal indole melatonin (MLT), and cancer progression has been shown to be associated with a decline in MLT secretion. Recently, another hormone, the adrenal steroid dehydroepiandrosterone-sulfate (DHEAS), has appeared to exert antitumor effects similar to those previously described for MLT. In addition, experimental studies suggest a diminished DHEAS production with neoplastic progression. This preliminary study was performed to evaluate the daily secretion of DHEAS in a group of early and advanced cancer patients. The study included 70 patients with solid tumors (gastrointestinal tract tumors: 28; breast cancer: 24; non-small cell lung cancer: 18), 28 without and 42 with distant metastases. The serum levels of DHEAS were measured by RIA in blood samples collected in the morning. The control group consisted of 100 age- and sex-matched healthy subjects. No significant difference in mean serum levels of DHEAS was observed between controls and non-metastatic patients. In contrast, metastatic patients, irrespectively of tumor histotype, showed significantly lower mean levels of DHEAS with respect to either controls or non-metastatic patients. Moreover, metastatic patients with visceral locations showed significantly lower values of DHEAS than those with bone or soft-tissue metastases. This preliminary study would suggest there to be a deficiency in the daily DHEA secretion in patients with disseminated cancer. Further studies evaluating circadian DHEAS secretion in relation in that of the pineal hormone MLT will be required to better define the biological significance of the advanced cancer-related decline in endogenous DHEAS production.  相似文献   

7.
W D Holtzclaw  G B Gordon 《Steroids》1989,54(4):355-371
Dehydroepiandrosterone sulfate (DHEAS) and unconjugated dehydroepiandrosterone (DHEA) are secretory products of the adrenal cortex. Measurement of serum levels of these steroids is of increasing epidemiologic interest, since low serum concentrations of DHEAS or DHEA have been associated with an increased risk of dying of cardiovascular disease or of developing cancer. Radioimmunoassays (RIAs) are the most convenient systems for the measurement of serum DHEAS concentrations in multiple samples. However, using sera from four individuals we show that different RIA kits provide quite different estimates of serum DHEAS concentrations. Moreover, these results do not always agree with the serum concentrations determined by an independent chromatographic and enzymatic reference method. The results highlight the need for an independent method of determining DHEAS levels in sera that can provide guidance in selecting an appropriate RIA, and in interpreting the results.  相似文献   

8.
9.
The metabolism of orally administered dehydroepiandrosterone (DHEA) by male and female golden Syrian hamsters was examined by quantification of DHEA and dehydroepiandrosterone sulfate (DHEAS) in gallbladder bile, urine and feces using high-performance liquid chromatography (HPLC). Plasma levels of DHEA and DHEAS were also determined by radioimmunoassay (RIA). After 5 days of oral DHEA administration (100 mg/kg body weight twice a day), RIA showed that plasma levels of DHEA and DHEAS were increased approximately 3-6 and 4-5 times, respectively, compared to controls. More than 95 % of circulating DHEA (S) in the peripheral blood was DHEAS. There was no significant sex difference in DHEAS plasma levels between male and female animals in the DHEA-supplemented group. However, 0.2 - 0.3 % of ingested DHEA was conjugated to DHEAS and excreted in urine by females, whereas less than 0.002 % was excreted in urine by males (p < 0.005). DHEAS was excreted in bile by males after DHEA supplementation, and the sex differences in DHEAS levels observed in bile were statistically significant (male, 18.7 +/- 7.5 vs. female, 5.6 +/- 3.1 micromol/l) (p < 0.005). Small amounts of ingested DHEA were excreted in an unchanged state in feces, and no sex difference was observed. These results suggest that there is a considerable sex difference in the conjugation and excretion of orally administered DHEA in the hamster.  相似文献   

10.
The purpose of this study was to determine the impact of dehydroepiandrosterone (DHEA) and corticosterone (CORT) treatment, using implants as a route of administration, on specific hormones, metabolites, and enzymes involved in energy metabolism. Sixty male Sprague-Dawley rats, 325 g initial weight, were implanted subcutaneously for 3 weeks with time-release pellets containing either DHEA or CORT at doses of 0, 10, 25, 50, or 100 mg in this 2 x 5 factorial experiment. In general, body weights and food intakes decreased as the level of steroid hormones increased. In contrast to DHEA treatment, rats receiving the 50- and 100-mg doses of CORT had lighter thymus glands and spleens and heavier epididymal and retroperitoneal fat pads than their controls. Rats treated with 100 mg of DHEA had lowered serum levels of triglycerides and lipid hydroperoxides whereas rats treated with 100 mg of CORT had higher levels of these blood lipids compared to their respective controls. In contrast to DHEA treatment, there was a dose-dependent increase in liver lipid content and the specific activities of the hepatic lipogenic enzymes glucose-6-phosphate dehydrogenase, malic enzyme, and fatty acid synthase in response to CORT treatment. Rats treated with 100 mg of DHEA had higher serum levels of IGF-1 than control rats. Conversely, rats treated with 100 mg of CORT had lower serum levels of IGF-1 and higher serum levels of testosterone, progesterone, and insulin than their controls. These data demonstrate the lipogenic actions of corticosterone in rats. Conversely, DHEA treatment reduced serum and hepatic lipids. Furthermore, these data suggest that using implants instead of bolus injections of steroids may be a more physiological approach for studying the influence of these steroids on lipid metabolism.  相似文献   

11.
Gonadotropin and steroid hormone levels in both peripheral and ovarian venous blood were measured in samples obtained from 20 Japanese patients with polycystic ovary syndrome (PCOs) and 10 normal women in early follicular phase (normal women) by radioimmunoassay. The change in the amount of steroid hormone following intravenous human menopausal gonadotropin (HMG) or dexamethasone administration was investigated. The mean concentration in patients with PCOs was significantly higher than the concentrations found in normal women for LH (p less than 0.001), but not for FSH in peripheral blood. Significantly elevated ovarian venous steroid hormone levels in PCOs were found for 17 alpha-hydroxypregnenolone (p less than 0.05), progesterone (p less than 0.05), 17 alpha-hydroxyprogesterone (p less than 0.01), 4 delta-androstenedione (p less 0.01), testosterone (p less than 0.01), estrone (p less than 0.01) and estradiol (p less than 0.05), but not for dehydroepiandrosterone-sulfate (DHEAS). The ovarian dehydroepiandrosterone (DHEA) level was slightly elevated in PCOs. The concentration of ovarian 4 delta-androstenedione in PCOs reached twelve times as much as that in normal women. After the administration of HMG, all of the ovarian venus steroid hormone levels were elevated slightly and without significance in the short observation time for 10 min. The DHEAS level was suppressed while the ovarian DHEA level remained high in PCOs following dexamethasone administration. These findings seem to indicate there is no adrenal involvement and no adrenal-like component in the ovary of PCOs, and no evidence of 3 beta-hydroxysteroid dehydrogenase and/or aromatase deficiency in this study. The increase in the steroid hormone secretion in PCOs is explained by the increase in ovarian production in polycystic enlarged ovaries.  相似文献   

12.
The effect of ACTH and prolactin on the synthesis of dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) was studied in cell suspensions of "normal" and tumorous (adenoma) human adrenal cortex. A stimulation of DHEA and no response of DHEAS production by ACTH in "normal" adrenocortical cell suspension was observed. However ACTH stimulated both DHEA and DHEAS synthesis in tumorous adrenocortical cells. Prolactin did not influence either the basal or the ACTH stimulated DHEA and DHEAS production of adrenocortical cells irrespective of their origin. Our results are compatible with the concept that the biosynthesis of DHEA is under ACTH control, while other factor(s) regulate(s) the sulfate pathway of DHEA secretion under normal conditions. In tumorous adrenocortical cells DHEA may be regulated--at least partly--by ACTH. Prolactin seems to have no direct effect on DHEA and DHEAS synthesis. It is postulated that the relationship between serum prolactin and DHEAS (or DHEA) levels observed by several authors might be an extraadrenal effect of prolactin on adrenal androgens.  相似文献   

13.
Neurosteroids, pregnenolone (Preg), dehydroepiandrosterone (DHEA) and their sulfates (PregS and DHEAS) are reported to exert their modulatory effects of neuronal excitability and synaptic plasticity via amino acid receptors, which affect and regulate the learning and memory process, mood, and depression. Although the brain levels of these steroids have been reported in rodents, the strain differences of the levels of these steroids have not been demonstrated. We examined the concentrations of Preg, 17-OH-Preg, DHEA, androstenediol (ADIOL) and their sulfates in whole brains from DBA/2, C57BL/6, BALB/c, ddY and ICR mice, the genetic backgrounds of which are different. No differences in the brain levels of Preg and DHEA were found among the strains. In contrast, PregS levels in DBA/2 were significantly lower than in the others, while DHEAS concentrations in DBA/2 were significantly higher than those in other strains. Strain differences were found in 17-OH-Preg, ADIOL and 17-OH-PregS but not in ADIOLS levels. The ranges of Preg and PregS levels were the highest among the steroids studied. Further, we measured serum these steroid levels. Although strain differences were also found in serum steroids, correlation study between brain and serum levels revealed that brain neurosteroids studied may not come from peripheral circulation. In conclusion, this is the first report of demonstrating mammalian brain levels of 17-OH-Preg, ADIOL, 17-OH-PregS and ADIOLS and the strain differences in neurosteroid levels in mice brains. The differences in levels may involve the strain differences in their behavior, e.g. aggression, adaptation to stress or learning, in mice.  相似文献   

14.
The skin is a well-recognized site of steroid formation and metabolism. Episkin is a cultured human epidermis. In this report, we investigate whether Episkin possesses a steroidogenic machinery able to metabolize adrenal steroid precursors into active steroids. Episkin was incubated with [14C]-dehydroepiandrosterone (DHEA) and 4-androstenedione (4-dione) and their metabolites were analyzed by liquid chromatography/mass spectrometry (LC/MS/MS). The results show that the major product of DHEA metabolism in Episkin is DHEA sulfate (DHEAS) (88% of the metabolites) while the other metabolites are 7alpha-OH-DHEA (8.2%), 4-dione (1.3%), 5-androstenediol (1.3%), dihydrotestosterone (DHT) (1.4%) and androsterone (ADT) (2.3%). When 4-dione is used as substrate, much higher levels of C19-steroids are produced with ADT representing 77% of the metabolites. These data indicate that 5alpha-reductase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD) and 3alpha-hydroxysteroid dehdyrogenase (3alpha-HSD) activities are present at moderate levels in Episkin, while 3beta-HSD activity is low and represents a rate-limiting step in the conversion of DHEA into C19-steroids. Using realtime PCR, we have measured the level of mRNAs encoding the steroidogenic enzymes in Episkin. A good agreement is found between the mRNAs expression in Episkin and the metabolic profile. High expression levels of steroid sulfotransferase SULT2B1B and type 3 3alpha-HSD (AKR1C2) correspond to the high levels of DHEA sulfate (DHEAS) and ADT formed from DHEA and 4-dione, respectively. 3beta-HSD is almost undetectable while the other enzymes such as type 1 5alpha-reductase, types 2, 4, 5, 7, 8, and 10 17beta-HSD and 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) (AKR1C1) are highly expressed. Except for UGT-glucuronosyl transferase, similar mRNA expression profiles between Episkin and human epidermis are observed.  相似文献   

15.
Data documenting the indirect interaction of vitamin D and bone metabolism via hormonal systems are rare. The authors analysed the predictive role of the vitamin D receptor (VDR) gene for circulating sex steroids and their precursors in postmenopausal women. Using the PCR technique, the polymorphic FokI, ApaI, TaqI and BsmI sites of the VDR gene were determined in relation to serum dehydroepiandrosterone sulphate (DHEAS), androstenedione (AD), testosterone, and estradiol levels. After adjustment to body mass and years since menopause, circulating DHEAS was higher in the Ff genotype than in ff (p < 0.001) and FF genotypes (p < 0.05, ANCOVA followed by least significant difference multiple comparison tests). The Ff genotype also contributed to the highest BMD at the hip (p < 0.01 as compared to ff genotype) and at the spine (p < 0.05). No significant associations were found between ApaI, TaqI and BsmI polymorphisms and serum DHEAS or between FokI, ApaI, TaqI or BsmI and serum androstenedione, testosterone or estradiol. The study shows that the VDR gene predicts synthesis and/or metabolism of sexual steroid preursor DHEA in parallel with bone mineral density (BMD). The results indicate that DHEA production and bone mass share a common genetic control through VDR.  相似文献   

16.
Fatigue is a common debilitating complication of primary biliary cirrhosis (PBC), the pathophysiologic mechanism of which is poorly understood. Recently, the neuroactive steroid dehydroepinadrosterone sulfate (DHEAS) was reported to be implicated in Chronic Fatigue Syndrome in the absence of liver disease. The present study was undertaken to analyse fatigue scores and their relationship with disease severity and circulating levels of DHEAS as well as its precursors DHEA and pregnenolone in PBC patients with (n=15) or without fatigue (n=10) compared to control subjects (n=11). Fatigue was assessed using the fatigue impact scale (FIS) including cognitive, physical and psychosocial subclasses. Steroids were measured by radioimmunoassay or gas chromatography/mass spectrometry. Plasma concentrations of DHEAS were significantly reduced in PBC patients with fatigue as compared to controls, while those of its precursors DHEA and pregnenolone remained within the control range. Plasma levels of DHEAS in PBC patients were significantly correlated with fatigue severity as reflected by total FIS scores including total (rp=-0.42; p=0.018), as well as the cognitive (rp=-0.37; p=0.03), physical (rp=-0.48; p=0.006) and psychosocial (rp=-0.35; p=0.04) subclasses of fatigue scores. No correlation of fatigue scores was observed with indices of liver function. These findings suggest that reduced levels of the neurosteroid DHEAS may contribute to fatigue in patients with PBC; substitutive therapy using DHEAS or its precursor DHEA could be beneficial in the management of fatigue in patients with low levels of DHEAS.  相似文献   

17.
Radioimmunoassay (RIA) is the most prevalent method for measuring small amounts of hormones, peptides, and other compounds in human body fluids. The method, however, has several problems, such as cross reactions or non-specific reactions of the antibody used. In order to establish an improved method for assaying dehydroepiandrosterone sulfate (DHEAS) and cholesterol, which are the largest components of human breast cyst and duct fluids, we describe a simple, accurate, and sensitive method using high-performance liquid chromatography (HPLC). The samples were treated with cholesterol oxidase for quantitation of dehydroepiandrosterone (DHEA) and free cholesterol, and the respective oxidized substances, 4-androstene-3,17-dione and 4-cholesten-3-one, were extracted with n-hexane. The extracts were analyzed by straight phase HPLC. Effluents were monitored by measuring absorption at 240 nm, where a newly introduced chromophoric group, an alpha,beta-unsaturated ketone, showed intense absorption (epsilon = 16,000). When the total amount of DHEA (DHEAS plus DHEA) was measured, the sample had been solvolyzed by sulfatase beforehand. The amounts of DHEAS were quantified by comparing the amounts of DHEA before and after solvolysis. Levels of free cholesterol, DHEAS, and DHEA in human breast cyst fluids (n = 30) were 1.77 +/- 1.12 mmol/dl, 8.27 +/- 10.24 micromol/dl, and 0.02 +/- 0.02 micromol/dl (means +/- SD), respectively. The levels of sterol and steroid measured in breast duct fluids that were turbid, brown, dark green, or milky in color (n = 9) (mean levels, 3.20 +/- 2.97 mmol/dl for free cholesterol and 14.77 +/- 13.75 micromol/dl for DHEAS) were significantly (P < 0.01) higher than the levels in clear or serous breast fluids (n = 21) (mean levels, 0.14 +/- 0.13 mmol/dl for free cholesterol and 0.04 +/- 0.07 micromol/dl for DHEAS).  相似文献   

18.
Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS), the major androgens secreted by human adrenal glands, were suggested to play a protective role in the pathogenesis of atherosclerosis and coronary heart disease. On the basis of a critical review of all existing studies we concluded that 1) there is no evidence of a protective role of DHEA and DHEAS in women, and 2) men with low plasma DHEA and DHEAS levels can be considered as beings at risk of developing a fatal cardiovascular event. These androgens can interfere with atherogenic process by several mechanisms. They influence enzymes such as glucoso-6-phosphate dehydrogenase, which can modify the lipid spectrum. Furthermore, they can inhibit human platelet aggregation, enhance fibrinolysis, slow down cell proliferation and reduce plasma levels of plasminogen activator inhibitor type 1 and tissue plasminogen activator antigen. We suggest that all these DHEA(S) actions are dependent on sex hormone metabolic pathways. There are still insufficient data to advise DHEA supplementation in elderly men, but this type of hormone replacement therapy merits further studies.  相似文献   

19.
One of the mechanisms of cocaine's actions in the central nervous system is its antidepressant action. This effect might be responsible for increased usage of the drug by individuals with mood disorders. Higher endogenous levels of the excitatory neurosteroid dehydroepiandrosterone sulfate (DHEAS) were reported to correlate with successful abstinence from cocaine use in addicts, but a clinical trial showed that supplementation with a high dose of DHEA increased cocaine usage instead. Such ambiguous effects of DHEA(S) could potentially be linked to its influence on the antidepressant effect of cocaine. In this study we tested DHEAS and its metabolite, androsterone, for interactions with cocaine in animal model of depression (forced swim test) and examined the effects of both steroids and cocaine on serotoninergic neurotransmission. All substances were also tested for influence on locomotor activity. A cocaine dose of 5 mg/kg, which had no significant effect on locomotor activity, was chosen for the forced swim test. Neither DHEAS nor androsterone showed any antidepressant action in this test, while cocaine manifested a clear antidepressant effect. Androsterone slightly reduced the antidepressant influence of cocaine while DHEAS markedly, dose-dependently enhanced it. Such an effect might be caused by the influence of DHEAS on serotonin neurotransmission, as this steroid decreased serotonin concentration and turnover in the striatum. When DHEAS and cocaine were administered together, the levels of serotonin in the striatum and hippocampus remained unchanged. This phenomenon may explain the additive antidepressant action of DHEAS and cocaine and why co-administration of DHEAS and cocaine increases drug use.  相似文献   

20.
Oral dehydroepiandrosterone (DHEA) replacement therapy may have a multitude of potential beneficial effects and exerts its action mainly via peripheral bioconversion to androgens (and estrogens). A daily dose of 50-mg DHEA has been shown by us and others to restore low endogenous serum DHEA concentrations to normal youthful levels followed by an increase in circulating androgens and estrogens. As the hepatic first-pass effect may lead to a non physiological metabolism of DHEA after oral ingestion we studied the influence of two single DHEA doses (50 and 100 mg) on the excretion of steroid metabolites in 14 elderly males [age 58.8+/-5.1 years (mean +/- SEM)] with endogenous DHEAS levels <1500 ng/ml and in 9 healthy females (age 23.3+/-4.1 years) with transient suppression of endogenous DHEA secretion induced by dexamethasone (dex) pretreatment (4x0.5 mg/day/4 days). Urinary steroid profiles in the elderly males were compared to the steroid patterns found in 15 healthy young men (age 28.9+/-5.1 years). In the females the results were compared to their individual baseline excretion without dex pretreatment. Urinary steroid determinations were carried out by semiautomatic capillary gas-liquid chromatography. In both genders DHEA administration induced significant increases in urinary DHEA (females: baseline vs. 50 mg vs. 100 mg: 361+/-131 vs. 510+/-264 vs. 1541+/-587 microg/day; males: placebo vs. 50 mg vs. 100 mg: 434+/-154 vs. 1174+/-309 vs. 4751+/-1059 microg/day) as well as in the major DHEA metabolites androsterone (A) and etiocholanolone (Et). Fifty mg DHEA led to an excretion of DHEA and its metabolites only slightly above baseline levels found in young females and in young men, respectively, whereas 100 mg induced clearly supraphysiological values. After 50 mg DHEA the ratios of urinary DHEA metabolites (A/DHEA, Et/DHEA) were not significantly different between elderly males vs. young male volunteers and young healthy females versus their individual baseline levels. In conclusion, an oral dose of 30 to 50 mg DHEA restores a physiological urinary steroid profile in subjects with DHEA deficiency without evidence for a relevant hepatic first-pass effect on urinary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号