首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The BGLR-R package implements various types of single-trait shrinkage/variable selection Bayesian regressions. The package was first released in 2014, since then it has become a software very often used in genomic studies. We recently develop functionality for multitrait models. The implementation allows users to include an arbitrary number of random-effects terms. For each set of predictors, users can choose diffuse, Gaussian, and Gaussian–spike–slab multivariate priors. Unlike other software packages for multitrait genomic regressions, BGLR offers many specifications for (co)variance parameters (unstructured, diagonal, factor analytic, and recursive). Samples from the posterior distribution of the models implemented in the multitrait function are generated using a Gibbs sampler, which is implemented by combining code written in the R and C programming languages. In this article, we provide an overview of the models and methods implemented BGLR’s multitrait function, present examples that illustrate the use of the package, and benchmark the performance of the software.  相似文献   

2.
The aim of this study was to compare iterative and direct solvers for estimation of marker effects in genomic selection. One iterative and two direct methods were used: Gauss-Seidel with Residual Update, Cholesky Decomposition and Gentleman-Givens rotations. For resembling different scenarios with respect to number of markers and of genotyped animals, a simulated data set divided into 25 subsets was used. Number of markers ranged from 1,200 to 5,925 and number of animals ranged from 1,200 to 5,865. Methods were also applied to real data comprising 3081 individuals genotyped for 45181 SNPs. Results from simulated data showed that the iterative solver was substantially faster than direct methods for larger numbers of markers. Use of a direct solver may allow for computing (co)variances of SNP effects. When applied to real data, performance of the iterative method varied substantially, depending on the level of ill-conditioning of the coefficient matrix. From results with real data, Gentleman-Givens rotations would be the method of choice in this particular application as it provided an exact solution within a fairly reasonable time frame (less than two hours). It would indeed be the preferred method whenever computer resources allow its use.  相似文献   

3.
Genetic evaluation based on information from phenotypes, pedigree and markers can be implemented using a recently developed single-step method. In this paper we compare accuracies of predicted breeding values for daily gain and feed conversion ratio (FCR) in Danish Duroc pigs obtained from different versions of single-step methods, the traditional pedigree-based method and the genomic BLUP (GBLUP) method. In particular, we present a single-step method with an adjustment of the genomic relationship matrix so that it is compatible to the pedigree-based relationship matrix. Comparisons are made for both genotyped and non-genotyped animals and univariate and bivariate models. The results show that the three methods with marker information (two single-step methods and GBLUP) produce more accurate predictions of genotyped animals than the pedigree-based method. In addition, single-step methods provide more accurate predictions for non-genotyped animals. The results also show that the single-step method with adjusted genomic relationship matrix produce more accurate predictions than the original single-step method. Finally, the results for the bivariate analyses show a somewhat improved accuracy and reduced inflation of predictions for FCR for the two single-step methods compared with the univariate analyses. The conclusions are: first, the methods with marker information improve prediction compared with the pedigree-based method; second, a single-step method, contrary to GBLUP, provides improved predictions for all animals compared to the pedigree-based method; and third, a single-step method should be used with an adjustment of the genomic relationship matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号