首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The current challenge, now that two plant genomes have been sequenced, is to assign a function to the increasing number of predicted genes. In Arabidopsis, approximately 55% of genes can be assigned a putative function, however, less than 8% of these have been assigned a function by direct experimental evidence. To identify these functions, many genes will have to undergo comprehensive analyses, which will include the production of chimeric transgenes for constitutive or inducible ectopic expression, for antisense or dominant negative expression, for subcellular localization studies, for promoter analysis, and for gene complementation studies. The production of such transgenes is often hampered by laborious conventional cloning technology that relies on restriction digestion and ligation. With the aim of providing tools for high throughput gene analysis, we have produced a Gateway-compatible Agrobacterium sp. binary vector system that facilitates fast and reliable DNA cloning. This collection of vectors is freely available, for noncommercial purposes, and can be used for the ectopic expression of genes either constitutively or inducibly. The vectors can be used for the expression of protein fusions to the Aequorea victoria green fluorescent protein and to the beta-glucuronidase protein so that the subcellular localization of a protein can be identified. They can also be used to generate promoter-reporter constructs and to facilitate efficient cloning of genomic DNA fragments for complementation experiments. All vectors were derived from pCambia T-DNA cloning vectors, with the exception of a chemically inducible vector, for Agrobacterium sp.-mediated transformation of a wide range of plant species.  相似文献   

5.
The photosynthetic, unicellular green alga, Chlamydomonas reinhardtii, lives in environments that often contain low concentrations of CO2 and HCO3 ?, the utilizable forms of inorganic carbon (Ci). C. reinhardtii possesses a carbon concentrating mechanism (CCM) which can provide suitable amounts of Ci for growth and development. This CCM is induced when the CO2 concentration is at air levels or lower and is comprised of a set of proteins that allow the efficient uptake of Ci into the cell as well as its directed transport to the site where Rubisco fixes CO2 into biomolecules. While several components of the CCM have been identified in recent years, the picture is still far from complete. To further improve our knowledge of the CCM, we undertook a mutagenesis project where an antibiotic resistance cassette was randomly inserted into the C. reinhardtii genome resulting in the generation of 22,000 mutants. The mutant collection was screened using both a published PCR-based approach (Gonzalez-Ballester et al. 2011) and a phenotypic growth screen. The PCR-based screen did not rely on a colony having an altered growth phenotype and was used to identify colonies with disruptions in genes previously identified as being associated with the CCM-related gene. Eleven independent insertional mutations were identified in eight different genes showing the usefulness of this approach in generating mutations in CCM-related genes of interest as well as identifying new CCM components. Further improvements of this method are also discussed.  相似文献   

6.
A high-throughput genetic screening platform in a single-celled photosynthetic eukaryote would be a transformative addition to the plant biology toolbox. Here, we present ChlaMmeSeq (Chlamydomonas MmeI-based insertion site Sequencing), a tool for simultaneous mapping of tens of thousands of mutagenic insertion sites in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. We first validated ChlaMmeSeq by in-depth characterization of individual insertion sites. We then applied ChlaMmeSeq to a mutant pool and mapped 11,478 insertions, covering 39% of annotated protein coding genes. We observe that insertions are distributed in a manner largely indistinguishable from random, indicating that mutants in nearly all genes can be obtained efficiently. The data reveal that sequence-specific endonucleolytic activities cleave the transforming DNA and allow us to propose a simple model to explain the origin of the poorly understood exogenous sequences that sometimes surround insertion sites. ChlaMmeSeq is quantitatively reproducible, enabling its use for pooled enrichment screens and for the generation of indexed mutant libraries. Additionally, ChlaMmeSeq allows genotyping of hits from Chlamydomonas screens on an unprecedented scale, opening the door to comprehensive identification of genes with roles in photosynthesis, algal lipid metabolism, the algal carbon-concentrating mechanism, phototaxis, the biogenesis and function of cilia, and other processes for which C. reinhardtii is a leading model system.  相似文献   

7.
8.
《Gene》1998,221(1):35-43
A series of versatile cloning vectors has been constructed that facilitate the expression of protein fusions to the Aequorea victoria green fluorescent protein (GFP) in plant cells. Amino-terminal- and carboxy-terminal protein fusions have been created and visualized by epifluorescence microscopy, both in transgenic Arabidopsis thaliana and after transient expression in onion epidermal cells. Using tandem dimers and other protein fusions to GFP, we found that the previously described localization of wild-type GFP to the cell nucleus is most likely due to diffusion of GFP across the nuclear envelope rather than to a cryptic nuclear localization signal. A fluorescence-based, quantitative assay for nuclear localization signals is described. In addition, we have employed the previously characterized mutants GFP–S65T and GFP–Y66H in order to allow for the expression of red-shifted and blue fluorescent proteins, respectively, which are suitable for double-labeling studies. Expression of GFP-fusions was controlled by a cauliflower mosaic virus 35S promoter. Using the Arabidopsis COP1 protein as a model, we confirmed a close similarity in the subcellular localization of native COP1 and the GFP-tagged COP1 protein. We demonstrated that COP1 was localized to discrete subnuclear particles and further confirmed that fusion to GFP did not compromise the activity of the wild-type COP1 protein.  相似文献   

9.
Molecular map of the Chlamydomonas reinhardtii nuclear genome   总被引:3,自引:0,他引:3  
We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C. reinhardtii. The map covers approximately 1,000 centimorgans (cM). Any position on the C. reinhardtii genetic map is, on average, within 2 cM of a mapped molecular marker. This molecular map, in combination with the ongoing mapping of bacterial artificial chromosome (BAC) clones and the forthcoming sequence of the C. reinhardtii nuclear genome, should greatly facilitate isolation of genes of interest by using positional cloning methods. In addition, the presence of easily assayed STS markers on each arm of each linkage group should be very useful in mapping new mutations in preparation for positional cloning.  相似文献   

10.
The auxin-inducible degron (AID) system has emerged as a powerful tool to conditionally deplete proteins in a range of organisms and cell types. Here, we describe a toolkit to augment the use of the AID system in Caenorhabditis elegans. We have generated a set of single-copy, tissue-specific (germline, intestine, neuron, muscle, pharynx, hypodermis, seam cell, anchor cell) and pan-somatic TIR1-expressing strains carrying a co-expressed blue fluorescent reporter to enable use of both red and green channels in experiments. These transgenes are inserted into commonly used, well-characterized genetic loci. We confirmed that our TIR1-expressing strains produce the expected depletion phenotype for several nuclear and cytoplasmic AID-tagged endogenous substrates. We have also constructed a set of plasmids for constructing repair templates to generate fluorescent protein::AID fusions through CRISPR/Cas9-mediated genome editing. These plasmids are compatible with commonly used genome editing approaches in the C. elegans community (Gibson or SapTrap assembly of plasmid repair templates or PCR-derived linear repair templates). Together these reagents will complement existing TIR1 strains and facilitate rapid and high-throughput fluorescent protein::AID tagging of genes. This battery of new TIR1-expressing strains and modular, efficient cloning vectors serves as a platform for straightforward assembly of CRISPR/Cas9 repair templates for conditional protein depletion.  相似文献   

11.
High-throughput Binary Vectors for Plant Gene Function Analysis   总被引:2,自引:0,他引:2  
A series of high-throughput binary cloning vectors were constructed to facilitate gene function analysis in higher plants. This vector series consists of plasmids designed for plant expression, promoter analysis, gene silencing, and green fluorescent protein fusions for protein localization. These vectors provide for high-throughput and efficient cloning utilizing sites for λ phage integrase/excisionase. In addition, unique restriction sites are incorporated in a multiple cloning site and enable promoter replacement. The entire vector series are available with complete sequence information and detailed annotations and are freely distributed to the scientific community for non-commercial uses.  相似文献   

12.
13.
14.
Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes.  相似文献   

15.
We report genetic evidence supporting the existence of suppressor genes in the chloroplast that act on a mitochondrial mutation that impairs heterotrophic growth in the green alga Chlamydomonas reinhardtii. One of these suppressors also acts on a point mutation in the rbcL gene in the chloroplast. These results are consistent with previous data showing that mitochondrial protein synthesis depends on chloroplast protein synthesis in C. reinhardtii. The nature of the interaction between chloroplasts and mitochondria is discussed in light of the requirement for import of tRNAs by plant mitochondria.  相似文献   

16.
Many aquatic algae induce a CO2-concentrating mechanism (CCM) associated with active inorganic carbon transport to maintain high photosynthetic affinity using dissolved inorganic carbon even in low-CO2 (LC) conditions. In the green alga Chlamydomonas reinhardtii, a Ca2+-binding protein CAS was identified as a novel factor regulating the expression of CCM-related proteins including bicarbonate transporters. Although previous studies revealed that CAS associates with the thylakoid membrane and changes its localization in response to CO2 and light availability, its detailed localization in the chloroplast has not been examined in vivo. In this study, high-resolution fluorescence images of CAS fused with a Chlamydomonas-adapted fluorescence protein, Clover, were obtained by using a sensitive hybrid detector and an image deconvolution method. In high-CO2 (5% v/v) conditions, the fluorescence signals of Clover displayed a mesh-like structure in the chloroplast and part of the signals discontinuously overlapped with chlorophyll autofluorescence. The fluorescence signals gathered inside the pyrenoid as a distinct wheel-like structure at 2 h after transfer to LC-light condition, and then localized to the center of the pyrenoid at 12 h. These results suggest that CAS could move in the chloroplast along the thylakoid membrane in response to lowering CO2 and gather inside the pyrenoid during the operation of the CCM.  相似文献   

17.
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.  相似文献   

18.
UVI31+ is an evolutionarily conserved BolA family protein. In this study we examine the presence, localization and possible functions of this protein in the context of a unicellular alga, Chlamydomonas reinhardtii. UVI31+ in C. reinhardtii exhibits DNA endonuclease activity and is induced upon UV stress. Further, UVI31+ that normally localizes to the cell wall and pyrenoid regions gets redistributed into punctate foci within the whole chloroplast, away from the pyrenoid, upon UV stress. The observed induction upon UV-stress as well as the endonuclease activity suggests plausible role of this protein in DNA repair. We have also observed that UV31+ is induced in C. reinhardtii grown in dark conditions, whereby the protein localization is enhanced in the pyrenoid. Biomolecular interaction between the purified pyrenoids and UVI31+ studied by NMR demonstrates the involvement of the disordered loop domain of the protein in its interaction.  相似文献   

19.
The highly conserved target of rapamycin (TOR) kinase is a central controller of cell growth in all eukaryotes. TOR exists in two functionally and structurally distinct complexes, termed TOR complex 1 (TORC1) and TORC2. LST8 is a TOR-interacting protein that is present in both TORC1 and TORC2. Here we report the identification and characterization of TOR and LST8 in large protein complexes in the model photosynthetic green alga Chlamydomonas reinhardtii. We demonstrate that Chlamydomonas LST8 is part of a rapamycin-sensitive TOR complex in this green alga. Biochemical fractionation and indirect immunofluorescence microscopy studies indicate that TOR and LST8 exist in high-molecular-mass complexes that associate with microsomal membranes and are particularly abundant in the peri-basal body region in Chlamydomonas cells. A Saccharomyces cerevisiae complementation assay demonstrates that Chlamydomonas LST8 is able to functionally and structurally replace endogenous yeast LST8 and allows us to propose that binding of LST8 to TOR is essential for cell growth.  相似文献   

20.
BackgroundThe cloning of toxic genes in E. coli requires strict regulation of the target genes' leaky expression. Many methods facilitating successful gene cloning of toxic genes are commonly exploited, but the applicability is severely limited.MethodsA CRISPR/dCas9-assisted system was used to clone toxic genes in E. coli. The plasmid-based and genome-integrated systems were designed in this study. And the green fluorescent protein characterization system was used to test the repression efficiency of the two systems.ResultsWe optimized the plasmid-based CRISPR/dCas9-assisted repression system via testing different sgRNAs targeting the Ptrc promoter and achieved inhibition efficiency up to 64.8%. The genome-integrated system represented 35.9% decreased GFP expression and was successfully employed to cloned four toxic genes from Corynebacterium glutamicum in E. coli.ConclusionsUsing this method, we successfully cloned four C. glutamicum-derived toxic genes that had been failed to clone in conventional ways. The CRISPR/dCas9-assisted gene cloning method was a promising tool to facilitate precise gene cloning of different origins in E. coli.General significanceThis system will be useful for cloning toxic genes from different origins in E. coli, and can accelerate the related research of gene characterization and heterologous expression in the metagenomic era.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号