首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of proteins are capable of converting from their soluble forms into highly ordered fibrous cross‐β aggregates (amyloids). This conversion is associated with certain pathological conditions in mammals, such as Alzheimer disease, and provides a basis for the infectious or hereditary protein isoforms (prions), causing neurodegenerative disorders in mammals and controlling heritable phenotypes in yeast. The N‐proximal region of the yeast prion protein Sup35 (Sup35NM) is frequently used as a model system for amyloid conversion studies in vitro. Traditionally, amyloids are recognized by their ability to bind Congo Red dye specific to β‐sheet rich structures. However, methods for quantifying amyloid fibril formation thus far were based on measurements linking Congo Red absorbance to concentration of insulin fibrils and may not be directly applicable to other amyloid‐forming proteins. Here, we present a corrected formula for measuring amyloid formation of Sup35NM by Congo Red assay. By utilizing this corrected procedure, we explore the effect of different sodium salts on the lag time and maximum rate of amyloid formation by Sup35NM. We find that increased kosmotropicity promotes amyloid polymerization in accordance with the Hofmeister series. In contrast, chaotropes inhibit polymerization, with the strength of inhibition correlating with the B‐viscosity coefficient of the Jones‐Dole equation, an increasingly accepted measure for the quantification of the Hofmeister series.  相似文献   

2.
《朊病毒》2013,7(5):347-354
ABSTRACT

The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve.  相似文献   

3.
Tutar L  Tutar Y 《Biopolymers》2008,89(3):171-174
Yeast cytosol has two important co-chaperons; Ydj1 and Sis1. Genetic experiments showed that Ydj1 is not essential for viability; however, cells lacking it grow very poorly at 30 degrees C or unable to grow at extreme temperatures. On the other hand, Sis1 is an essential protein and apparently plays a functional role at assembly or disassembly of protein complexes. Stability experiments revealed that only Ydj1-protected Hsp70 proteins can hydrolyze ATP under prolonged stress.  相似文献   

4.
Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller “seeds.” Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI+] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI+] aggregates to enlarge. This is incompatible with a previously proposed “capping” model where the overexpressed Q/N-rich protein poisons, or “caps,” the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI+] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI+] aggregates in a way that blocks their shearing.  相似文献   

5.
印文  何进  喻子牛  王阶平 《生物工程学报》2011,27(10):1401-1407
Sup35是酿酒酵母的翻译终止因子,其朊蛋白结构域在体内外都能形成淀粉样蛋白纤维。由于其高度有序的交叉β-片层构象与其他物种中的淀粉样蛋白纤维相似,因此,Sup35的分子自组装机理的研究可以作为蛋白质错误折叠性疾病及朊病毒生物学等相关研究的理想模型。而Sup35朊蛋白结构域自组装成纳米线的能力在生物技术和纳米材料等方面已得到广泛的应用。  相似文献   

6.
Diseases such as type 2 diabetes, Alzheimer's and Parkinson's are associated with the formation of amyloid. The transmissible spongiform encephalopathies, such as variant Creutzfeldt-Jakob disease, are believed to result from infectious forms of amyloid proteins termed prions. The ability of amyloid to initiate spontaneously and in the case of prions, to transfer successfully from one host to another, has been hard to fully rationalize. In this paper we use a mathematical model to explore the idea that it might be a combination of the presence of the prion/amyloid form and a change in the state of the host that allows the amyloid/prion to successfully initiate and propagate itself. We raise the intriguing possibility that potentially infectious amyloid may lie dormant in an apparently healthy individual awaiting a change in the state of the host or transmittal to a new more susceptible host. On this basis we make an analogy between prion/amyloid disease development and the two-hit model of cancer progression. We additionally raise the possibility that infectious amyloid strains may be characterized by a size distribution of length or radius.  相似文献   

7.
Shorter J  Lindquist S 《The EMBO journal》2008,27(20):2712-2724
Self-templating amyloid forms of Sup35 constitute the yeast prion [PSI(+)]. How the protein-remodelling factor, Hsp104, collaborates with other chaperones to regulate [PSI(+)] inheritance remains poorly delineated. Here, we report how the Ssa and Ssb components of the Hsp70 chaperone system directly affect Sup35 prionogenesis and cooperate with Hsp104. We identify the ribosome-associated Ssb1:Zuo1:Ssz1 complex as a potent antagonist of Sup35 prionogenesis. The Hsp40 chaperones, Sis1 and Ydj1, preferentially interact with Sup35 oligomers and fibres compared with monomers, and facilitate Ssa1 and Ssb1 binding. Various Hsp70:Hsp40 pairs block prion nucleation by disassembling molten oligomers and binding mature oligomers. By binding fibres, Hsp70:Hsp40 pairs occlude prion recognition elements and inhibit seeded assembly. These inhibitory activities are partially relieved by the nucleotide exchange factor, Fes1. Low levels of Hsp104 stimulate prionogenesis and alleviate inhibition by some Hsp70:Hsp40 pairs. At high concentrations, Hsp104 eliminates Sup35 prions. This activity is reduced when Ssa1, or enhanced when Ssb1, is incorporated into nascent prions. These findings illuminate several facets of the chaperone interplay that underpins [PSI(+)] inheritance.  相似文献   

8.
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic'' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.  相似文献   

9.
The mechanism by which proteins aggregate and form amyloid fibrils is still elusive. In order to preclude interference by cellular factors and to clarify the role of the primary sequence of Sup35p prion domain in formation of amyloid fibrils, we generated five Sup35NM variants by randomizing amino acid sequences in PrDs without altering the amino acid composition and analyzed the in vitro process of amyloid fibril formation. The results showed that each of the five Sup35NM variants polymerized into amyloid fibrils in vitro under native conditions. Furthermore, the Sup35NM variants showed differences in their aggregation time courses. These findings indicate that specific amino acid sequence features in PrD can modify the rate of conversion of Sup35p into amyloid fibrils in vitro.  相似文献   

10.
Pin1 is a peptidyl-prolyl isomerase that induces the cis-trans conversion of specific Ser/Thr-Pro peptide bonds in phosphorylated proteins, leading to conformational changes through which Pin1 regulates protein stability and activity. Since down-regulation of Pin1 has been described in several neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Huntington's Disease (HD), we investigated its potential role in prion diseases. Animals generated on wild-type (Pin1+/+), hemizygous (Pin1+/?) or knock-out (Pin1?/?) background for Pin1 were experimentally infected with RML prions. The study indicates that, neither the total depletion nor reduced levels of Pin1 significantly altered the clinical and neuropathological features of the disease.  相似文献   

11.
《Cell reports》2020,30(8):2834-2845.e3
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

12.
Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.  相似文献   

13.
A number of fungal proteins are capable of adopting multiple alternative, self-perpetuating prion conformations. These prion variants are associated with functional alterations of the prion-forming protein and thus the generation of new, heritable traits that can be detrimental or beneficial. Here we sought to determine the extent to which the previously-reported ZnCl2-sensitivity trait of yeast harboring the [PSI+] prion is modulated by genetic background and prion variant, and whether this trait is accompanied by prion-dependent proteomic changes that could illuminate its physiological basis. We also examined the degree to which prion variant and genetic background influence other prion-dependent phenotypes. We found that ZnCl2 exposure not only reduces colony growth but also limits chronological lifespan of [PSI+] relative to [psi?] cells. This reduction in viability was observed for multiple prion variants in both the S288C and W303 genetic backgrounds. Quantitative proteomic analysis revealed that under exposure to ZnCl2 the expression of stress response proteins was elevated and the expression of proteins involved in energy metabolism was reduced in [PSI+] relative to [psi?] cells. These results suggest that cellular stress and slowed growth underlie the phenotypes we observed. More broadly, we found that prion variant and genetic background modulate prion-dependent changes in protein abundance and can profoundly impact viability in diverse environments. Thus, access to a constellation of prion variants combined with the accumulation of genetic variation together have the potential to substantially increase phenotypic diversity within a yeast population, and therefore to enhance its adaptation potential in changing environmental conditions.  相似文献   

14.
Failure to promptly dispose of undesirable proteins is associated with numerous diseases. In the case of cellular prion protein (PrP), inhibition of the proteasome pathway can generate a highly aggregation-prone, cytotoxic form of PrP implicated in neurodegeneration. However, the predominant mechanisms that result in delivery of PrP, ordinarily targeted to the secretory pathway, to cytosolic proteasomes have been unclear. By accurately measuring the in vivo fidelity of protein translocation into the endoplasmic reticulum (ER), we reveal a slight inefficiency in PrP signal sequence function that generates proteasomally degraded cytosolic PrP. Attenuating this source of cytosolic PrP completely eliminates the dependence on proteasomes for PrP degradation. This allows cells to tolerate both higher expression levels and decreased proteasomal capacity without succumbing to the adverse consequences of misfolded PrP. Thus, the generation of potentially toxic cytosolic PrP is controlled primarily during its initial translocation into the ER. These results suggest that a substantial proportion of the cell's constitutive proteasomal burden may consist of proteins that, like PrP, fail to cotranslationally enter the secretory pathway with high fidelity.  相似文献   

15.
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.  相似文献   

16.
Previous studies identified several single-point mutants of the prion protein that displayed dominant-negative effects on prion replication. The dominant-negative effect was assumed to be mediated by protein X, an as-yet-unknown cellular cofactor that is believed to be essential for prion replication. To gain insight into the mechanism that underlies the dominant-negative phenomena, we evaluated the effect of the Q218K variant of full-length recombinant prion protein (Q218K rPrP), one of the dominant-negative mutants, on cell-free polymerization of wild-type rPrP into amyloid fibrils. We found that both Q218K and wild-type (WT) rPrPs were incorporated into fibrils when incubated as a mixture; however, the yield of polymerization was substantially decreased in the presence of Q218K rPrP. Furthermore, in contrast to fibrils produced from WT rPrP, the fibrils generated in the mixture of WT and Q218K rPrPs did not acquire the proteinase K-resistant core of 16 kDa that was shown previously to encompass residues 97-230 and was similar to that of PrP(Sc). Our studies demonstrate that the Q218K variant exhibits the dominant-negative effect in cell-free conversion in the absence of protein X, and that this effect is, presumably, mediated by physical interaction between Q218K and WT rPrP during the polymerization process.  相似文献   

17.
Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI+] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI+] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.  相似文献   

18.
Prion diseases are associated with misfolding of the natively α-helical prion protein into isoforms that are rich in cross β-structure. However, both the mechanism by which pathological conformations are produced and their structural properties remain unclear. Using a combination of nuclear magnetic resonance spectroscopy, computation, hydroxyl radical probing combined with mass-spectrometry and site-directed mutagenesis, we showed that prion stop mutants that accumulate in amyloidogenic plaque-forming aggregates fold into a β-helix. The polymorphic residue 129 is located in the hydrophobic core of the β-helix in line with a critical role of the 129 region in the packing of protein chains into prion particles. Together with electron microscopy our data support a trimeric left-handed β-helix model in which the trimer interface is formed by residues L125, Y128 and L130. Different prion types or strains might be related to different aggregate structures or filament assemblies.  相似文献   

19.
Recent studies have revealed that accumulation of prion protein (PrP) in the cytoplasm results in the production of aggregates that are insoluble in non-ionic detergents and partially resistant to proteinase K. Transgenic mice expressing PrP in the cytoplasm develop severe ataxia with cerebellar degeneration and gliosis, suggesting that cytoplasmic PrP may play a role in the pathogenesis of prion diseases. The mechanism of cytoplasmic PrP neurotoxicity is not known. In this report, we determined the molecular morphology of cytoplasmic PrP aggregates by immunofluorescence and electron microscopy, in neuronal and non-neuronal cells. Transient expression of cytoplasmic PrP produced juxtanuclear aggregates reminiscent of aggresomes in human embryonic kidney 293 cells, human neuroblastoma BE2-M17 cells and mouse neuroblastoma N2a cells. Time course studies revealed that discrete aggregates form first throughout the cytoplasm, and then coalesce to form an aggresome. Aggresomes containing cytoplasmic PrP were 1-5-microm inclusion bodies and were filled with electron-dense particles. Cytoplasmic PrP aggregates induced mitochondrial clustering, reorganization of intermediate filaments, prevented the secretion of wild-type PrP molecules and diverted these molecules to the cytoplasm. Cytoplasmic PrP decreased the viability of neuronal and non-neuronal cells. We conclude that any event leading to accumulation of PrP in the cytoplasm is likely to result in cell death.  相似文献   

20.
Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号