首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review has focused on several parameters related to the delivery of carcinogenic metal compounds to the cell nucleus as a basis for understanding the intermediates formed between metals and cellular components and the effect of these intermediates on DNA structure and function. Emphasis has been placed on metal interactions at the cellular membrane, including lipid peroxidation, metal interactions with glutathione and their relation to membrane injury, and metal effects on the membrane bound enzyme, Na+/K+ ATPase. Metal binding to metallothionein is also considered, particularly as related to transport and utilization of metal ions and to genetic defects in these processes exemplified in Menkes disease. The ability of cadmium to induce the synthesis of metallothionein more strongly than zinc is also discussed in relation to other toxic and carcinogenic metals. The effects of metal ions on purified DNA and RNA polymerase systems are presented with some of the recent studies using biological ligand-metal complexes. This review points out the importance of considering how metals affect in vitro systems when presented as ionic forms or complexed to relevant biological ligands.  相似文献   

2.
Transition metal ions play key structural and functional roles, affecting structures of biomolecules and enzyme function. The importance of transition metal ions in chemical biology is, thus, undisputed. However, the aqueous chemistry of metal ions is complicated because they form species in several protonation and redox states. In the presence of metabolites, metal ions can also form coordination complexes. The existence of several species is relevant because enzymes and membrane receptors can distinguish between species even when they are rapidly equilibrating. Thus, metal ions, enzyme cofactors, and therapeutic agents are sensitive to the metal ion speciation chemistry because it affects their interaction with enzymes and other biomolecules. Speciation is also crucial for metal-containing bioorthogonal reactions, since water and metabolites stabilize active catalysts, affect chemoselectivity and reaction yields.  相似文献   

3.
The chemical modification of solid supports with chelators for the sorption of residual amounts of specific metal ions is of environmental and biological current interest. The present work describes the preparation and chelating properties of a new hydroxypyrimidinone-functionalized silica, (HOPY-PrN)-Si, with high affinity for hard metal ions. The new chelating matrix was obtained by coupling a 1-hydroxy-2-(1H)-pyrimidinone derivative, HOPY-PrN, to an epoxy-activated silica. It showed good stability at neutral and acidic conditions and high sequestering capacity for hard metal ions, namely Fe3+ and Al3+, as previously found for the corresponding sepharosic derivative. However, the fact that the present silica-gel derivative is considerably less expensive gives support to its potential interest as a sorbent of traces of toxic hard metal ions from water streams or even from physiological fluids, aided by extracorporeal devices containing the immobilized chelator.  相似文献   

4.
The rate of changes of heavy metal ions concentrations in the organism or biological system will determine the choice of strategy of realization of heavy metal ions effect and, consequently, the biological effect itself. Which of the possible strategies will dominate, depend on the rate of changes of concentration of heavy metal ions in biological systems, functional activity of organism at the moment of metal action and on metals chemical properties. Keeping this view, the present review deals with the concept of time-based alterations of concentration of heavy metal ions (TACMI) in biological systems. On the basis of TACMI concept formation of organism resistance to metal ions action could be explained. In the event of slow increase of its concentration in organism, it produces induction of metallothioneins, other stress-proteins and relative changes in the whole metabolic system. This, first of all, results in formation of new specific epigenotypes, which provide higher resistance (hormesis effect) not only to metal ions that induced this effect, but also to such stress-factors as high temperature (at least, for micro-algae cells).  相似文献   

5.
Transition metal homeostasis: from yeast to human disease   总被引:1,自引:0,他引:1  
Transition metal ions are essential nutrients to all forms of life. Iron, copper, zinc, manganese, cobalt and nickel all have unique chemical and physical properties that make them attractive molecules for use in biological systems. Many of these same properties that allow these metals to provide essential biochemical activities and structural motifs to a multitude of proteins including enzymes and other cellular constituents also lead to a potential for cytotoxicity. Organisms have been required to evolve a number of systems for the efficient uptake, intracellular transport, protein loading and storage of metal ions to ensure that the needs of the cells can be met while minimizing the associated toxic effects. Disruptions in the cellular systems for handling transition metals are observed as a number of diseases ranging from hemochromatosis and anemias to neurodegenerative disorders including Alzheimer??s and Parkinson??s disease. The yeast Saccharomyces cerevisiae has proved useful as a model organism for the investigation of these processes and many of the genes and biological systems that function in yeast metal homeostasis are conserved throughout eukaryotes to humans. This review focuses on the biological roles of iron, copper, zinc, manganese, nickel and cobalt, the homeostatic mechanisms that function in S. cerevisiae and the human diseases in which these metals have been implicated.  相似文献   

6.
铁、铜、锌、锰等金属离子是各类生物体生存和增殖所必需的微量元素,可影响生物体内蛋白酶活性、免疫反应、生理过程和抗感染机制。细菌感染过程中,宿主可通过限制或提高体内环境中金属离子的浓度来抑制细菌增殖,与此同时,细菌进化出各种转运系统以适应宿主体内金属离子水平的变化。由于不同细菌的金属离子外排系统在结构和生化特性上存在变异,它们呈现出独特的金属离子外排模式。本文根据现有文献报道及本团队研究结果,对铁、铜、锌和锰离子的细菌外排系统进行讨论和总结,旨在综述目前对细菌金属离子稳态调控机制研究进展的认识,为深入理解细菌金属稳态调控相关机制提供参考。  相似文献   

7.
As a part of our study on iron reduction-mobilization in biological systems, in particular at root-soil interface, the effect of the addition of different metal ions to the iron(III)-D-galacturonic acid system has been investigated. The ions which are found to form particularly stable complexes with the galacturonate ligand strongly increase the yield of the reduction of iron(III) to iron(II). These findings are in agreement with the capability of some metal ions to form stable complexes through interaction both with the carboxylate group and with the ring oxygen atom of the sugar molecule, inducing opening of the ring and formation of a free aldehydic group. The importance of these processes in availability of iron to plant roots is emphasized.  相似文献   

8.
One of the challenges of modern inorganic chemistry is translating the potential of metal catalysts to living systems to achieve controlled non-natural transformations. This field poses numerous issues associated with the metal compounds biocompatibility, stability, and reactivity in complex aqueous environment. Moreover, it should be noted that although referring to ‘metal catalysis’, turnover has not yet been fully demonstrated in most of the examples within living systems. Nevertheless, transition metal catalysts offer an opportunity of modulating bioprocesses through reactions that are complementary to enzymes. In this context, gold complexes, both coordination and organometallic, have emerged as promising tools for bio-orthogonal transformations, endowed with excellent reactivity and selectivity, compatibility within aqueous reaction medium, fast kinetics of ligand exchange reactions, and mild reaction conditions. Thus, a number of examples of gold-templated reactions in a biologically relevant context will be presented and discussed here in relation to their potential applications in biological and medicinal chemistry.  相似文献   

9.
In the last 15?years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical–physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical–physical mechanisms may be involved in the natural stability of Bio-Me-nanomaterials. As a result, macromolecules such as DNA, polyphosphates and proteins may electrostatically interact with Bio-Me-nanomaterials in suspension through their charged moieties, showing the same properties of counterions in Ch-Me-nanostructure suspensions. Since several biomolecules (e.g. neutral lipids, nonionic biosurfactants, polysaccharides, and secondary metabolites) produced by metal(loid)-grown organisms can develop similar steric hindrance as compared to nonionic amphiphilic surfactants and block co-polymers generally used to sterically stabilize Ch-Me-nanomaterials. These biomolecules, most likely, are involved in the development of steric stabilization, because of their bulky structures. Finally, charged lipids and polysaccharides, ionic biosurfactants or proteins with amphiphilic properties can exert a dual effect (i.e. electrostatic and steric repulsion interactions) in the contest of Bio-Me-nanomaterials, leading to the high degree of stability observed.  相似文献   

10.
The handling of trace elements by plants plays a fundamental role in food security and safety. Therefore, there is a need to understand the mechanisms that govern metal ion trafficking in plants. The past decade has seen an immense expansion of knowledge on metal ion transport in a variety of biological systems including plants, but as for other organisms, the mechanisms for intracellular zinc trafficking remain enigmatic. The current report highlights recent advances in understanding zinc transport in plants and in identifying the biomolecules involved in this process. A particular focus is put on pinpointing determinants for zinc specificity, and we also highlight areas in need of development. Reliable experimental speciation data are a first step towards systems biology approaches to mineral nutrition in plants-but there is also a need to understand molecular details. One intriguing question, in particular in the context of predicting protein function, concerns how discrimination between metal ions in a biological system functions.  相似文献   

11.
In this review, chemical and biological parameters are discussed thatstrongly influence the speciation of heavy metals, their availability tobiological systems and, consequently, the possibilities to usebioremediation as a cleanup tool for heavy metal polluted sites. In orderto assess heavy metal availability, a need exists for rapid, cost-effectivesystems that reliably predict this parameter and, based on this, thefeasibility of using biological remediation techniques for site managementand restoration. Special attention is paid to phytoremediation as anemerging technology for stabilization and remediation of heavy metalpollution. In order to improve phytoremediation of heavy metal pollutedsites, several important points relevant to the process have to beelucidated. These include the speciation and bioavailability of the heavymetals in the soil determined by many chemical and biological parameters,the role of plant-associated soil microorganisms and fungi inphytoremediation, and the plants. Several options are described how plant-associated soil microorganisms canbe used to improve heavy metal phytoremediation.  相似文献   

12.
Bioremoval of heavy metals by the use of microalgae   总被引:8,自引:0,他引:8  
Bioremoval, the use of biological systems for the removal of metal ions from polluted waters, has the potential to achieve greater performance at lower cost than conventional wastewater treatment technologies for metal removal. Bioremoval capabilities of microalgae have been extensively studied, and some commercial applications have been initiated. Although microalgae are not unique in their bioremoval capabilities, they offer advantages over other biological materials in some conceptual bioremoval process schemes. Selected microalgae strains, purposefully cultivated and processed for specific bioremoval applications, have the potential to provide significant improvements in dealing with the world-wide problems of metal pollution. In addition to strain selection, significant advances in the technology appear possible by improving biomass containment or immobilization techniques and by developing bioremoval process steps utilizing metabolically active microalgae cultures. The latter approach is especially attractive in applications where extremely low levels of residual metal ions are desired. This review summarizes the current literature, highlighting the potential benefits and problems associated with the development of novel algal-based bioremoval processes for the abatement of heavy metal pollution.  相似文献   

13.
The role played by the Jahn-Teller effect for a correct interpretation of the spectroscopic and structural data of some biological systems is stressed and a short review of the investigations so far performed is presented. Afterwards, on the basis of the angular overlap model, several expressions are given for the coupling constants of the transition metal ions, which mainly occur in biomolecules (Fe, Co, Cu, Mo) in order to have an approximate evaluation of the Jahn-Teller effect magnitude. The above expressions are then applied to obtain the vibronic coupling constants of the deoxygenated hemoglobin and myoglobin. The results obtained are compared with the predictions previously made by the author on these systems.  相似文献   

14.
Characterization of the biomolecules involved in molecular processes occurring in biological systems such as the human cell remains central to biology, biotechnology, and medicine. One of the preferred methods of selectively purifying specific classes of biomolecules from complex biological matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field of phosphoproteomics. Additional studies have shown the potential of this sorbent in purification of other acidic post-translational modified peptides, such as sialylated glycopeptides, thereby targeting the sialiome, defined as the content of sialic acid containing glycoproteins of a given cell, body fluid or tissue. The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20 years ago until recent proteomics applications today will be reviewed here.  相似文献   

15.
Polypyridyl coordinating ligands are common in metal complexes used in medicinal inorganic chemistry. These ligands possess intrinsic cytotoxicity, but detailed data on this phenomenon are sparse, and cytotoxicity values vary widely and are often irreproducible. To provide new insights into the biological effects of bipyridyl-type ligands and structurally related metal-binding systems, reports of free ligand cytotoxicity were reviewed. The cytotoxicity of 25 derivatives of 2,2′-bipyridine and 1,10-phenanthroline demonstrates that there is no correlation between IC50 values and ligand properties such as pKa, log D, polarizability volume, and electron density, as indicated by NMR shifts. As a result of these observations, as well as the various reported mechanisms of action of polypyridyl ligands, we offer the hypothesis that biological effects are governed by the availability of and affinity for specific metal ions within the experimental model.  相似文献   

16.
Transition metals as catalysts of "autoxidation" reactions   总被引:9,自引:0,他引:9  
Superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl radical (.OH) produced from the "autoxidation" of biomolecules, such as ascorbate, catecholamines, or thiols, have been implicated in numerous toxicities. However, the direct reaction of dioxygen with the vast majority of biomolecules, including those listed above, is spin forbidden, a condition which imposes a severe kinetic limitation on this reaction pathway. Therefore, an alternate mechanism must be invoked to explain the "autoxidations" reactions frequently reported. Transition metals are efficient catalysts of redox reactions and their reactions with dioxygen are not spin restricted. Therefore it is likely that the "autoxidation" observed for many biomolecules is, in fact, metal catalyzed. In this paper we discuss: 1) the quantum mechanic, thermodynamic, and kinetic aspects of the reactions of dioxygen with biomolecules; 2) the involvement of transition metals in biomolecule oxidation; and 3) the biological implications of metal catalyzed oxidations. We hypothesize that true autoxidation of biomolecules does not occur in biological systems, instead the "autoxidation" of biomolecules is the result of transition metals bound by the biomolecules.  相似文献   

17.
Citric acid represents a class of carboxylic acids present in biological fluids and playing key roles in biochemical processes in bacteria and humans. Its ability to promote diverse coordination chemistries in aqueous media, in the presence of metal ions known to act as trace elements in human metabolism, earmarks its involvement in a number of physiological functions. Cobalt is known to be a central element of metabolically important biomolecules, such as B12, and therefore its biospeciation in biological fluids constitutes a theme worthy of chemical and biological perusal. In an effort to unravel the aqueous chemistry of cobalt in the presence of a physiologically relevant ligand, citrate, the first aqueous, soluble, mononuclear complex has been synthesized and isolated from reaction mixtures containing Co(II) and citrate in a 1:2 molar ratio at pH approximately 8. The crystalline compound (NH4)4[Co(C6H5O7)2] (1) has been characterized spectroscopically (UV/vis, EPR) and crystallographically. Its X-ray structure consists of a distorted octahedral anion with two citrate ligands fulfilling the coordination requirements of the Co(II) ion. The magnetic susceptibility measurements of 1 in the range from 6 to 295 K are consistent with a high-spin complex containing Co(II) with a ground state S=3/2. Corroborating this result is the EPR spectrum of 1, which shows a signal consistent with the presence of a Co(II) system. The spectroscopic and structural properties of the complex signify its potential biological relevance and participation in speciation patterns arising under conditions consistent with those employed for its synthesis and isolation.  相似文献   

18.
Silicon is involved in numerous important structural and functional roles in a wide range of organisms, including diatoms, plants, and humans, but clear mechanisms have been discovered only in diatoms and sponges. Silicate availability influences metal concentrations within various cell- and tissue-types, but a mechanism has not been discovered so far. In an earlier study on Baker’s yeast Saccharomyces cerevisiae it was proposed that a chemical mechanism, rather than a biological one, is important. In the present study, the interaction of silicon with Baker’s yeast is further investigated by studying the influence of zinc and magnesium on Si accumulation both at a low and a high silicate concentration in the medium. Si accumulation fitted well with Freundlich adsorption and Si release followed depolymerization kinetics, indicating that silicate adsorbs to the surface of the cell rather than being transported over the cell membrane. Subsequently, adsorbed silicate interacts with metal ions and, therefore, alters the cell’s affinity for these ions. Since several metals are nutritional, these Si interactions can significantly change the growth and viability of organisms. In conclusion, the results show that chemistry is important in Si and metal accumulation in Baker’s yeast, and suggest that similar mechanisms should be studied in detail in other organisms to unravel essential roles of Si.  相似文献   

19.
Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.  相似文献   

20.
Activated sludge systems can be operated to select bacteria which accumulate phosphorus as polyphosphate. By these means, phosphate can be removed without the addition of chemical precipitants. This contribution presents results of experiments with a bench-scale purification plant for domestic sewage. The goal was to find the concentrations of relevant metal cations at which the biological P removal may be affected by competing chemical (precipitation) or physical (adsorption) processes. For this goal, increasing amounts of iron and calcium, respectively, were added into the pilot plant. During the addition of iron, the proportion of chemically (iron-) bound phosphorus increased from 10 to more than 50%. The P-release rate substantially decreased with increasing amount of added iron. An addition of small amounts of iron enhanced the long-term stability of the P elimination as a whole. During the experimental period with addition of calcium, the proportion of Ca-bound phosphorus increased from 1 to 2% to almost 15%. In batch experiments a measurable Ca-phosphate precipitation took place at a pH value of at least 8.0 and a Ca-concentration of at least 100 mg/l. The increase in hardness of the influent waste water didn't produce any positive effect on the stability of the enhanced biological phosphorus removal. The metal ions Ca2+, Mg2+ and K+ serve as counter-ions in the polyhosphate chains. They were identified and quantified by X-ray spectrometry in combination with scanning transmission electron microscopy. A release of Mg2+ and K+ occured simultaneously with the degration of polyphosphates (PP). The PP bound to Ca was not redox sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号