首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2 (PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2 production in fibroblasts. Exogenous addition of rat IL-1alpha to cultured lung fibroblasts induced PGE2 secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1alpha protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1alpha gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2 secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1alpha (but not IL-1beta). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2 secretion and fibroblast inhibition (day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1alpha secretion by ATII cells is one factor that stimulates PGE2 production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2 production through an IL-1alpha-independent pathway.  相似文献   

2.
The proliferation of fibroblasts creates an environment favoring post-operative tendon adhesion, but targeted therapy of this pathology remains in its infancy. In this study, we explored the effect of heat shock protein 72 (HSP72), a major inducible member of the heat shock protein family that can protect cells against many cellular stresses including heat shock, on fibroblast proliferation in tendon adhesion, with its underlying mechanisms investigated. HSP72 expression was examined in an established rat model of tendon injury using RT-qPCR and immunoblot analysis. After conducting ectopic expression and depletion experiments in fibroblast NIH3T3 cells, we determined the effects of HSP72 on the expression of α-SMA and STAT3 signaling pathway-related genes, fibroblast proliferation, as well as collagen production. The mRNA (65.46%) and protein (63.65%) expression of HSP72 was downregulated in the rat model of tendon injury. The in vitro experiments revealed that overexpression of HSP72 inhibited fibroblast proliferation (42.57%) and collagen production (45.60%), as well as reducing α-SMA expression (42.49%) and the extent of STAT3 phosphorylation (55.46%). Moreover, we observed that HSP72 overexpression reduced inflammation as well as the number of inflammatory cell infiltration and fibroblasts in vivo. Furthermore, the inhibited extent of STAT3 phosphorylation contributed to the impaired fibroblast proliferation and collagen production evoked by upregulated HSP72. In summary, the present study unveils an inhibitory role of HSP72 in tendon adhesion via inactivation of the STAT3 signaling pathway. This finding may enable the development of new therapeutic strategies for the prevention against tendon adhesion.  相似文献   

3.
4.
5.
The effects of mast cells (MC) in an in vitro wound model were studied. The model consisted of rat peritoneal MC cultured on confluent monolayers of 3T3 fibroblasts (MC/3T3). A linear wound was performed by cutting along the midline and scraping one half of the monolayer. After 42 h fibroblasts were counted in the scraped area of the wound. In the MC/3T3 cocultures 27.6 +/- 2.1 fibroblasts were found compared to 16.6 +/- 0.9 in the 3T3 cultures. The most significant increase in the number of fibroblasts was obtained upon activation of the MC with anti-IgE antibodies immediately after wound production (39.9 +/- 2.1). Stimulation with compound 48/80 had a weaker effect (32.7 +/- 1.5). Incubation of 3T3 wounded monolayers with supernatants of anti-IgE- or compound 48/80-activated MC, or with sonicated MC, induced an increase in fibroblast number similar to that found in unactivated MC/3T3. [3H]Thymidine incorporation followed by autoradiography was performed to assess fibroblast mitosis. The highest number of labeled fibroblasts beyond the wound line was found in immunologically activated MC/3T3 (29.7 +/- 4.4), followed by compound 48/80-activated MC/3T3 (18.4 +/- 1.5), MC/3T3 (15.1 +/- 3.6), and 3T3 (10.6 +/- 2.6). After addition of aphidicolin, which inhibited fibroblast mitosis, MC were still effective in enhancing fibroblast migration. In all the cocultures MC were observed to have migrated alongside fibroblasts. Thus merely the presence of MC adhering to wounded fibroblast monolayers significantly enhanced migration and proliferation of the fibroblasts. A further increase was achieved by immunological activation of the MC. We therefore suggest that MC have a facilitating role in this in vitro wound model.  相似文献   

6.
Pulmonary fibrosis is a potentially fatal consequence of treatments for malignancy and is an increasing problem in bone marrow transplant patients and in cases of allogeneic lung transplant. The fibrotic response is characterized by increases in lung fibroblast number and collagen synthesis. This laboratory previously isolated stable, functionally distinct, murine lung fibroblast subsets (Thy-1+ and Thy-1) to study the contribution of fibroblast subpopulations in lung fibrosis. The fibroblast fibrotic response may be induced by cytokines secreted by infiltrating cells such as T lymphocytes and mast cells. In the current study two key regulatory cytokines, interferon-γ (IFN-γ) and interleukin-4 (IL-4), were investigated for their effects on the collagen synthesis of murine lung fibroblast subsets. IL-4 and IFN-γ are putatively characterized as fibrogenic and anti-fibrogenic cytokines, respectively, and are found in repairing lung tissue. Stimulation with recombinant IL-4 induced a 100% increase in total collagen production only by Thy-1+ fibroblasts. Types I and III collagen mRNA were increased in the Thy-1+ fibroblasts, unlike the Thy-1 subset. In contrast, IFN-γ decreased constitutive collagen production by more than 50% in Thy-1+ and Thy-1 fibroblasts. Interestingly, the two subsets utilized their collagen production machinery (collagenase, tissue inhibitors of metalloproteinases) differently to further regulate collagen turnover in response to IL-4 and IFN-γ. Overall, our data support the hypothesis that IL-4 is fibrogenic and IFN-γ is anti-fibrogenic. Moreover, selective expansion of IL-4 responsive fibroblasts (e.g., Thy-1+) may be important in the transition from repair to chronic fibrosis. In addition, these data suggest that an inflammatory response dominated by IL-4-producing Th2 lymphocytes and/or mast cells will promote fibrosis development. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The current application for many potential cell-based treatments for liver failure is limited by the low availability of mature functional hepatocytes. Although adult hepatocytes have a remarkable ability to proliferate in vivo, attempts to proliferate adult hepatocytes in vitro have been less successful. In this study, we investigated the effect of coculture cell type on the proliferative response and the functional activities of hepatocytes. We show, for the first time, a robust proliferative response of primary adult rat hepatocytes when cocultured with mouse 3T3-J2 fibroblasts. Hepatocytes cultured at low density on growth-arrested 3T3-J2 fibroblast feeder layers underwent significantly higher proliferation rates than when cultured on feeder layers made of four other cell types. Increasing colony size correlated with an increase in hepatocellular functions. The proliferating hepatocytes retained their morphologic, phenotypic, and functional characteristics. Using a cell patterning technique, we found that 3T3-J2 fibroblasts stimulate DNA synthesis in hepatocytes by short-range heterotypic cell-cell interactions. When hepatocytes that proliferated in cocultures were harvested and further subcultured either on 3T3-J2 fibroblast feeders or in the collagen sandwich configuration, their behavior was similar to that of freshly isolated hepatocytes. We conclude that adult rat hepatocytes can proliferate in vitro in a coculture cell type-dependent manner, and can be serially propagated by coculturing with 3T3-J2 fibroblasts while maintaining their differentiated characteristics. Our results also suggest that one of the major reasons for the functional differences in hepatocyte cocultures may be due to the different proliferative responses of hepatocytes as a function of coculture cell type. This study provides new insights in the roles of coculture cell types and cell-cell interactions in the modulation of hepatic proliferation and function.  相似文献   

8.
When mouse bone marrow-derived mast cells (BMMC) are cocultured with a confluent layer of mouse 3T3 fibroblasts in the presence of WEHI-3-conditioned medium, the mast cells undergo a phenotypic change toward that of a connective tissue mast cell, and the fibroblasts increase their synthesis of globopentaosylceramide. We now demonstrate that fibroblasts lose their contact inhibition and multiply such that by the 2nd and the 4th wk of coculture there are, respectively, approximately four-fold and six-fold more fibroblasts than in the cultures that are not exposed to BMMC. This in vitro increase in the number of fibroblasts is dependent on the number of mast cells (over the range of 6 x 10(4) to 1 x 10(6) BMMC/culture) initially seeded with the fibroblasts and on the concentration of WEHI-3-conditioned medium present during the coculture. That the fibroblasts also multiply in BMMC/fibroblast cocultures exposed to synthetic IL-3 or to purified IL-3 indicates that IL-3 is a component in WEHI-3-conditioned medium that induces mast cells to produce the fibroblast growth factor. The number of fibroblasts does not increase if fibroblasts are exposed to lysates of BMMC, or to BMMC-derived conditioned medium, or if the two cell types are separated from one another during the coculture with a 3-microns filter or a 0.4-microns filter. Thus, IL-3-activated BMMC must be in proximity to fibroblasts to induce them to multiply. Because of their increased numbers per culture dish, total fibroblasts that were cocultured with mast cells synthesized approximately two-fold more 35S-labeled proteoglycans, incorporated approximately 3-fold more [3H] proline into collagenase-sensitive proteins, and had substantially more alpha 2(I) collagen mRNA than fibroblasts that were maintained in the absence of mast cells. These is vitro studies reveal a sequence by which IL-3-activated mast cells may play a role in the induction of fibrosis.  相似文献   

9.
We investigated the effects that the combination of IL-1 alpha and transforming growth factor-beta (TGF-beta) had on PGE2 production in a murine clonal osteoblastic cell line MC3T3-E1 and primary rat calvarial osteoblast-like cells. In serum-supplemented medium, IL-1 alpha was a potent stimulator of PGE2 production in MC3T3-E1 cells (50-fold increase with 0.1 ng/ml). TGF-beta (10 ng/ml) had only a small effect alone and no additional effect on IL-1 alpha-induced responses. In serum-deprived MC3T3-E1 cells, PGE2 responses to IL-1 alpha were either absent or markedly reduced. TGF-beta alone had small effects. However, simultaneous addition of TGF-beta with IL-1 alpha to MC3T3-E1 cells partially restored the ability of IL-1 alpha to generate a PGE2 response (10-fold increase in PGE2 with 0.1 ng/ml of both IL-1 alpha and TGF-beta). As with MC3T3-E1 cells, serum-deprived primary fetal rat calvarial osteoblastic cells also did not respond to IL-1 alpha, unless TGF-beta was present in the medium (sixfold increase in PGE2 with 0.1 ng/ml IL-1 alpha and 10 ng/ml TGF-beta). The synergistic effect of TGF-beta and IL-1 alpha was specific for PGE2 responses, because these factors did not synergistically affect cell proliferation, collagen and noncollagen protein synthesis, or alkaline phosphatase activity. The observed synergy was not associated with changes in the steady state cyclooxygenase (PGH synthase) mRNA levels. However, it did correlate with increased release of [3H]arachidonic acid from prelabeled serum-depleted MC3T3-E1 cells. Hence, the synergistic interactions of IL-1 alpha and TGF-beta on PGE2 appear to occur through an increase in the release of arachidonic acid substrate from phospholipid pools. These effects may be important for both normal bone turnover and the responses of bone to inflammatory and immune stimuli.  相似文献   

10.
Zhu J  Carver W 《Cytokine》2012,58(3):368-379
Interleukin-33 (IL-33) is a recently described member of the interleukin-1 (IL-1) family. It is produced by diverse cell types in response to a variety of stresses including hemorrhage and increased mechanical load. Though only relatively recently discovered, IL-33 has been shown to participate in several pathological processes including promoting type 2 T helper cell-associated autoimmune diseases. In contrast, IL-33 has been also found to have protective effects in cardiovascular diseases. Recent studies have illustrated that IL-33 attenuates cardiac fibrosis induced by increased cardiovascular load in mice (transaortic constriction). Since cardiac fibrosis is largely dependent on increased production of extracellular matrix by cardiac fibroblasts, we hypothesized that IL-33 directly inhibits pro-fibrotic activities of these cells. Experiments have been carried out with isolated rat cardiac fibroblasts to evaluate the effects of IL-33 on the modulation of cardiac fibroblast gene expression and function to test this hypothesis. The expression of the IL-33 receptor, interleukin-1 receptor-like 1 (ST2), was detected at the mRNA and protein levels in isolated adult rat cardiac fibroblasts. Subsequently, the effects of IL-33 treatment (0-100 ng/ml) on the expression of extracellular matrix proteins and pro-inflammatory cytokines/chemokines were examined as well as the effects on rat cardiac fibroblast activities including proliferation, collagen gel contraction and migration. While IL-33 did not directly inhibit collagen I and collagen III production, it yielded a dose-dependent increase in the expression of interleukin-6 and monocyte chemotactic protein-1. Treatment of rat cardiac fibroblasts with IL-33 also impaired the migratory activity of these cells. Further experiments illustrated that IL-33 rapidly activated multiple signaling pathways including extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, c-Jun N-terminal kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in a dose-dependent manner. Experiments were carried out with pharmacological inhibitors to determine the role of specific signaling pathways in the response of fibroblasts to IL-33. These experiments illustrated that the activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinases are critical to the increased production of interleukin-6 and monocyte chemotactic protein-1 in response to IL-33. These studies suggest that IL-33 has an important role in the modulation of fibroblast function and gene expression. Surprisingly, IL-33 had no effect on the expression of genes encoding extracellular matrix components or on proliferation, markers typical of fibrosis. The major effects of IL-33 detected in these studies included inhibition of cell migration and activation of cytokine/chemokine expression. The previously reported inhibition of cardiac fibrosis may include more complicated mechanisms that involve other cardiac cell types. Future studies aimed at determining the effects of IL-33 on other cardiac cell types are warranted.  相似文献   

11.
Balb/3T3 fibroblasts respond to interleukin-1 (IL-1) by proliferating in a dose-dependent fashion. Increasing proliferative responses were observed with increasing IL-1 concentration in serum-free medium when the medium was supplemented with insulin, transferrin, and selenium. This response was evident only if the cell culture medium also contained the cyclooxygenase inhibitor indomethacin. When another fibroblast mitogen, epidermal growth factor (EGF) was cocultured with either purified monocyte-derived IL-1 beta or recombinant IL-1 beta, there was a potentiation of proliferation above the expected additive response. Unexpectedly, the response to recombinant IL-1 alpha was only additive with EGF. This suggests that IL-1-mediated activation of synovial fibroblasts in rheumatoid arthritis may be compounded by EGF as well as by other fibroblast mitogens secreted by cells found in the joint. The results further suggest that IL-1 and EGF interactions may play a significant role in wound healing, scarring, and bone resorption. In addition, these results imply that there may be different cellular activation pathways brought to bear in vivo which may depend, in part, on the IL-1 isotype available.  相似文献   

12.
The attachment of primary rat hepatocytes and fibroblasts to collagen type I is mediated by non-RGD-dependent β1 integrin matrix receptors. In this report we describe a novel 96-well microtiter plate assay for the quantification of fibroblast-mediated contraction of floating collagen type I gels. Fetal calf serum and platelet-derived growth factor (PDGF), but not transforming growth factor-β1, stimulated primary rat heart fibroblasts and normal human diploid fibroblasts (AG 1518) to contract collagen gels to less than 10% of the initial gel volume within a 24-h incubation period. Rabbit polyclonal antibodies directed to the rat hepatocyte integrin β1-chain inhibited the PDGF-stimulated collagen gel contraction. The inhibitory activity on contraction of the anti-β1 integrin IgG could be overcome by adding higher doses of PDGF. The contraction process was not blocked by anti-fibronectin IgG nor by synthetic peptides containing the tripeptide Arg-Gly-Asp (RGD), in concentrations that readily blocked fibroblast attachment to fibronectin-coated planar substrates. Autologous fibronectin or control peptides containing the tripeptide Arg-Gly-Glu were without effect. Immunofluorescence microscopy on fibroblasts grown within collagen gels revealed a punctate distribution of the β1 integrin and a lack of detectable levels of endogenously produced fibronectin. Collectively these data suggest a role for integrin collagen receptors with affinity for collagen fibers, distinct from the previously described RGD-dependent fibronectin receptors, in the fibronectin-independent PDGF-stimulated collagen gel contraction process.  相似文献   

13.
Fibroblast migration, proliferation, extracellular matrix protein synthesis and degradation, all of which play important roles in inflammation, are themselves induced by various growth factors and cytokines. Less is known about the interaction of these substances on lung fibroblast function in pulmonary fibrosis. The goal of this study was to investigate the effects of PDGF alone and in combination with IL-1beta and TNF-alpha on the production of human lung fibroblast matrix metalloproteinases, proliferation, and the chemotactic response. The assay for MMPs activity against FITC labeled type I and IV collagen was based on the specificity of the enzyme cleavage of collagen. Caseinolytis and gelatinolytic activities of secreted proteinases were analyzed by zymography. Fibronectin in conditioned media was measured using human lung fibronectin enzyme immunoassay. Cell proliferation was measured by 3H-Thymidine incorporation assay. Cell culture supernatants were tested for PGE2 content by ELISA. Chemotactic activity was measured using the modified Boyden chamber. Matrix metalloproteinase assay indicated that IL-1beta, TNF-alpha and PDGF induced intestitial collagenase (MMP-1) production. MMP assay also indicated that IL-1beta and TNF-alpha had inhibitory effects on MMP-2,9(gelatinaseA,B) production. Casein zymography confirmed that IL-1beta stimulated stromlysin (matrix metalloproteinase 3; MMP-3) and gelatin zymography demonstrated that TNF-alpha induced MMP-9 production in human lung fibroblast, whereas PDGF alone did not. PDGF in combination with IL-1beta and TNF-alpha induced MMP-3 and MMP-9 activity, as demonstrated by zymography. PDGF stimulated lung fibroblast proliferation in a concentration-dependent manner, whereas IL-1beta and TNF-alpha alone had no effect. In contrast, the proliferation of human lung fibroblasts by PDGF was inhibited in the presence of IL-1beta and TNF-alpha, and this inhibition was not a consequence of any elevation of PGE2. PDGF stimulated fibroblast chemotaxis in a concentration-dependent manner, and this stimulation was augmented by combining PDGF with IL-1beta and TNF-alpha. These findings suggested that PDGF differentially regulated MMPs production in combination with cytokines, and further that MMP assay and zymography had differential sensitivity for detecting MMPs. The presence of cytokines with PDGF appears to modulate the proliferation and chemotaxis of human lung fibroblasts.  相似文献   

14.
We examined the biological effects induced by both human recombinant interleukin-1 alpha (IL-1 alpha) and beta (IL-1 beta) in five different cell types of human, rat and mouse origin. IL-1 alpha and beta preparations were standardized in terms of biological activity in the EL-4/CTLL bioassay and, in parallel, employed to stimulate PGE2 secretion in human fibroblasts, mesangial cells (MC), C57B1/6 mouse MC, DBA/2 mouse macrophages and Sprague Dawley rat MC. In addition, the co-mitogenic effects of IL-1 alpha and beta were determined in freshly prepared Sprague Dawley rat thymocytes. No significant differences in IL-1 alpha and beta concentration dependent PGE2 production were detectable in the different cell types (MC, fibroblasts and macrophages) of human or mouse origin. Incubation of Sprague Dawley rat MC with both IL-1 alpha and beta resulted in a concentration dependent production of PGE2. However, in contrast to mouse or human MC the potency of IL-1 beta to induce PGE2 in Sprague Dawley rat MC was 26-fold higher compared to IL-1 alpha. In addition, the potency of IL-1 beta to enhance co-stimulated proliferation of Sprague Dawley thymocytes was 200-fold higher than that of equal biological activities of IL-1 alpha. When we tested the additive effects on Sprague Dawley cells, increasing IL-1 beta concentrations added to a fixed IL-1 alpha concentration resulted in a cumulative rise in both, PGE2 secretion by MC and thymocyte proliferation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Wang R  Wan Q  Zhang Y  Huang F  Yu K  Xu D  Wang Q  Sun J 《Life sciences》2007,80(26):2481-2488
Previous findings indicate that emodin has anti-proliferation and anti-fibrosis effects on several cell lines. In this study, we investigated the effects of emodin on IL-1β induced proliferation of mesangial cells (MCs) and on their production of extracellular matrix (ECM), and explored the possible mechanisms. To test the therapeutic effect of emodin on progressive renal disease, we administered emodin to rats in renal failure models induced by subtotal nephrectomy, the renal function was analyzed. Our results showed emodin significantly suppressed IL-1β induced MC proliferation and arrested the cell-cycle progress in vitro. Fibronectin and collagen IV production by MC were significantly reduced after emodin treatment. P38 mRNA, protein levels of P-P38, P-MKK3/6 and P-MKK4 were quantified. We observed no alterations of P38 expression and P-MKK4 protein content; however, protein levels of P-P38 and P-MKK3/6 significantly decreased after emodin treatment. In the renal failure models, after administration of emodin for eight weeks, the rat renal lesions were significantly ameliorated, as evidenced by the decreased blood creatinine, urea, and the 24-hour urine protein. In conclusion, emodin suppresses IL-1β induced MC proliferation and ECM production in vitro. We hypothesize that this is achieved by inactivating MKK3/6 and P38. Emodin ameliorates renal failure in subtotal nephrectomized rats, which suggests a potential role of emodin in the treatment of progressive renal diseases.  相似文献   

16.
Interleukin-1 (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) IL-1 induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-1 alpha and beta on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrIL-1s stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrIL-1s. Both IL-1s were observed to increase the steady-state levels of pro alpha 1(I) and pro alpha 2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrIL-1 alpha and beta stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrIl-1 alpha and beta both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-1s to stimulate cell growth or production of collagen and collagenase. Each of the IL-1s stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrIL-1 beta was found to be less potent than hrIL-1 alpha in stimulating PGE2 production. These observations support the notion that IL-1 alpha and beta may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-1 alpha and beta might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.  相似文献   

17.
18.
Both MC3T3-G2/PA6 preadipocytes and interleukin 3 (IL 3) can support in vitro proliferation of mouse hemopoietic stem cells (CFU-S). We examined whether MC3T3-G2/PA6 cells produce IL 3 and whether a common mechanism might underlie the action of both of these agents. We used cultured mast cells, DA-1 cells, and FDC-P2 cells as the targets of IL 3 and conditioned medium (CM) of WEHI-3 cells as a source of IL 3. MC3T3-G2/PA6 CM did not support the growth of the above cells. IL 3 mRNA was not detected in the preadipocytes. Since CM obtained from the cocultures of bone marrow cells and MC3T3-G2/PA6 cells did not have a significant effect on the growth of the IL 3-dependent cells, none of the bone marrow cells seem to produce IL 3 under the influence of the preadipocytes. When the factor-dependent cells were cocultured with MC3T3-G2/PA6 cells, the former did not survive, whereas mast cells and DA-1 cells intimately associated with the preadipocytes. Even when bone marrow cells, mast cells, and MC3T3-G2/PA6 cells were cocultured, the number of CFU-S increased, but not that of mast cells. These results seem to exclude the possibility of the action of IL 3 in the microenvironment provided by MC3T3-G2/PA6 preadipocytes.  相似文献   

19.
The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac physiopathological injury.  相似文献   

20.
Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krüppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号