首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A series of analogues of adenine nucleotides have been synthesized and tested for Pharmacological potency and resistance to dephosphorylation at a variety of isolated tissue preparations where ATP is active. Structure-activity studies defined four subtypeso f purinoceptors, and enabled the design of specific agonists for P2x and for P2y purinoceptors to be undertaken. L-Adenosine 5′-β, γ-methylenetriphosphonate (L-AMP-PCP) is a specific P2x purinoceptor agonist, and adenosine 5′-β-fluorodiphosphate (ADP-β-F) is a specific P2y agonist.  相似文献   

2.
Exracellular nucleotides like ATP and its derivatives are possible chemical messengers in vertebrate nervous systems. In invertebrate nervous systems, however, little is known about their role in neurotransmission. We have studied the reponse of identified neurones of the leech Hirudo medicinalis to the purinoceptor agonist ATP, ADP, AMP, and adenosine using conventional intracellular microelectrodes and whole-cell patch-clamp recording. Bath application of the agoinsts depolarized the different neurons, but not neuropil glial cells. The most effective responses (up to 10 mV) were observed with ATP (100 μM) or ADP (100 μM) in the noxious and touch cells. In most neurons the nonhydrolyzable ATP derivative ATP-γ-S (5 μM) induced larger depolarizations that 100 μM ATP, indicating that most of the potency of ATP is lost presumably due to its degradation by ectonucleotidases. In medial noxios cells, ATP (100 μM) induced an inward current of 1.7 ± 1.1 nA at a holding potential of ?60 mV. The ATP-induced current-voltage relationship showed an inward rectification and a reversal potential close to 0 m V. In a Na+-free extracellular solution, the ATP-induced inward current decreased and in a Na+- and Ca2+-free saline only a small residual current persisted. The possible P2 purinoceptor antagonist suramin did not antagonize the ATP-induced current, but itself evoked an inward current and a conductance increase. We conclude that ATP activates nonselective cation channels in medial noxious cells of the leech with the order of potency of purinoceptor agonists ATP ≥ ADP > AMP. The results suggest that these cells express purinoceptors of the P2 type. 1994 John Wiley & Sons, Inc.  相似文献   

3.
The level of intracellular diadenosine 5′, 5′′′-P1,P4-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70–80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA.  相似文献   

4.
Lymphocytes from normal subjects or patients with chronic lymphocytic leukemia are known to possess receptors for extracellular ATP termed P2Z purinoceptors whose physiological role is undefined. Addition of extracellular ATP (50–500 μM) to both normal and leukemic lymphocytes caused loss of binding of monoclonal antibodies to L-selectin (CD62L) on the cell surface. UTP, ADP, and adenosine (all at 500 μM) had no effect on L-selectin expression. Several features of the ATP-induced loss of L selectin indicate that this effect is mediated by lymphocyte P2Z purinoceptors. First the loss was attenuated in isotonic NaCl medium compared to 150 mM KCl medium. Second the loss of L-selectin was immediately halted by addition of Mg2+ ions in molar excess of ATP. The most potent nucleotide causing L-selectin loss was benzoylbenzoic ATP (>10 μM) which is also the most potent agonist for the P2Z purinoceptor. Finally preincubation of lymphocytes with oxidized ATP, an irreversible inhibitor of P2Z purinoceptors, also inhibited ATP induced loss of L-selectin. Extracellular ATP is known to open an ion channel associated with the P2Z purinoceptor on B-lymphocytes which allows influx of Ca2+. However, ATP-induced loss of L-selectin did not require extracellular Ca2+. Moreover addition of the calcium ionophore, ionomycin, had minimal effect on L-selectin expression. Staurosporine (500 nM), an inhibitor of protein kinase C, inhibited only 10% of ATP induced loss of L-selectin but completely inhibited the loss of L-selectin caused by 50 nM PMA. Thus extracellular ATP interacts with lymphocyte P2Z purinoceptors which leads to shedding of L-selectin via a pathway which requires neither Ca2+ influx nor activation of protein kinase C. ATP may have a physiological role in the loss of L-selectin which occurs during the interactions of lymphocytes with other cells. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Adenosine 5′-triphosphate (ATP) is an extracellular signal that regulates various cellular functions. Cellular secretory activities are enhanced by ATP as well as by cholinergic and adrenergic stimuli. The present study aimed to determine which purinoceptors play a role in ATP-induced changes in the intracellular concentration of calcium ions ([Ca2+]i) and in the fine structure of acinar cells of rat lacrimal glands. ATP induced exocytotic structures, vacuolation and an increase in [Ca2+]i in acinar cells. The removal of extracellular Ca2+ or the use of Ca2+ channel blockers partially inhibited the ATP-induced [Ca2+]i increase. U73122 (an antagonist of PLC) and heparin (an antagonist of IP3 receptors) did not completely inhibit the ATP-induced [Ca2+]i increase. P1 purinoceptor agonists did not induce any changes in [Ca2+]i, whereas suramin (an antagonist of P2 receptors) completely inhibited ATP-induced changes in [Ca2+]i. A P2Y receptor agonist, 2-MeSATP, induced a strong increase in [Ca2+]i, although UTP (a P2Y2,4,6 receptor agonist) had no effect, and reactive blue 2 (a P2Y receptor antagonist) resulted in partial inhibition. The potency order of ATP analogs (2-MeSATP > ATP ⋙ UTP) suggested that P2Y1 played a significant role in the cellular response to ATP. BzATP (a P2X7 receptor agonist) induced a small increase in [Ca2+]i, but α,β-meATP (a P2X1,3 receptor agonist) had no effect. RT-PCR indicated that P2X2,3,4,5,6,7 and P2Y1,2,4,12,14 are expressed in acinar cells. In conclusion, the response of acinar cells to ATP is mediated by P2Y (especially P2Y1) as well as by P2X purinoceptors.  相似文献   

6.
We investigated the mechanism by which GABA-B receptors enhance the Gs-coupled receptor-mediated cAMP production inXenopusoocytes expressing poly (A)+RNA derived from rat brain cortex. We expressed the cystic fibrosis transmembrane conductance regulator gene (CFTR) as a reporter for cAMP changes in oocytes. The GABA-B agonist (-)baclofen enhanced the adrenergic β2agonist isoproterenol- or vasoactive intestinal peptide (VIP)-induced CFTR currents, whereas (-)baclofen alone did not cause any currents. The (-)baclofen-enhanced currents were inhibited by the GABA-B antagonist 2-OH saclofen. The enhancement by (-)baclofen was further augmented by coexpressing adenylyl cyclase (AC) type II, an isotype activated by Gβγ and Gαs, but not by coexpressing AC type III, an isotype insensitive to Gβγ. Moreover, pretreatment of the oocytes with pertussis toxin (PTX) abolished the enhanced effect of (-)baclofen. These results indicate that upon GABA-B activation, the Gβγ released from PTX-sensitive G-proteins activates the AC type II (or IV), and this process requires the Gαs activation by Gs-coupled receptors.  相似文献   

7.
Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A) stimulates DNA synthesis in Xenopus laevis oocytes in the presence of activated DNA as template. Besides Ap4A, other analogues such as Ap3A, ATP and other derivatives are able to stimulate DNA polymerase activity. The effect of Ap4A on DNA synthesis is observed with poly(dT) and poly(dT)-poly(dA) as templates, while no effect is found with poly(dA)(dT)12–18 and poly(dC)(dG)12–18. In the presence of a poly(dT) template, the oocyte extract is able to utilize Ap4A as primer and to form a covalent bond between this dinucleotide and the nascent poly(dA) chain. An Ap4A-binding protein present in the system has been purified and separated from DNA polymerase α-primase after phosphocellulose chromatography. After this separation, Ap4A is no longer able to stimulate the polymerase activity, or to be utilized as primer by DNA polymerase α-primase.  相似文献   

8.
Inward-rectifying K+ (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K+ currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na+. Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl+ > K+ > Rb+ > NH4+) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K+.  相似文献   

9.
The catechin EGCG is the main flavonoid compound of green tea and has received enormous pharmacological attention because of its putative beneficial health effects. This study investigated for the first time the effect of EGCG on hERG channels, the main pharmacological target of drugs that cause acquired long QT syndrome.Cloned hERG channels were expressed in Xenopus oocytes and in HEK293 cells. Heterologous hERG currents were inhibited by EGCG with an IC50 of 6.0 μmol/l in HEK293 cells and an IC50 of 20.5 μmol/l in Xenopus laevis oocytes. Onset of effect was slow and only little recovery from inhibition was observed upon washout. In X. laevis oocytes EGCG inhibited hERG channels in the open and inactivated states, but not in the closed states. The half-maximal activation voltage of hERG currents was shifted by EGCG towards more positive potentials.In conclusion, EGCG is a low-affinity inhibitor of hERG sharing major electrophysiological features with pharmaceutical hERG antagonists.  相似文献   

10.
P2X receptors are membrane ion channels gated by extracellular ATP. Mammals possess seven distinct P2X subtypes (P2X1-7) that have important functions in a wide array of physiological processes including roles in the central nervous system (CNS) where they have been linked to modulation of neurotransmitter release. We report here the cloning and functional characterization of a P2X receptor from the mollusc Lymnaea stagnalis. This model organism has a relatively simple CNS consisting of large readily identifiable neurones, a feature which together with a well characterized neuronal circuitry for important physiological processes such as feeding and respiration makes it an attractive potential model to examine P2X function. Using CODEHOP PCR we identified a single P2X receptor (LymP2X) in Lymnaea CNS which was subsequently cloned by RT-PCR. When heterologously expressed in Xenopus oocytes, LymP2X exhibited ATP evoked inward currents (EC50 6.2 µM) which decayed during the continued presence of agonist. UTP and ADP did not activate the receptor whereas αβmeATP was a weak agonist. BzATP was a partial agonist with an EC50 of 2.4 µM and a maximal response 33% smaller than that of ATP. The general P2 receptor antagonists PPADS and suramin both inhibited LymP2X currents with IC50 values of 8.1 and 27.4 µM respectively. LymP2X is inhibited by acidic pH whereas Zn2+ and Cu2+ ions exhibited a biphasic effect, potentiating currents up to 100 µM and inhibiting at higher concentrations. Quantitative RT-PCR and in situ hybridization detected expression of LymP2X mRNA in neurones of all CNS ganglia suggesting this ion channel may have widespread roles in Lymnaea CNS function.  相似文献   

11.
Thermosensitive members of the transient receptor potential (TRP) family of ion channels (thermal TRP channels) play a crucial role in mammalian temperature sensing. Orthologues of these channels are present in lower vertebrates and, remarkably, some thermal TRP orthologues from different species appear to mediate opposing responses to temperature. For example, whereas the mammalian TRPV3 channel is activated by heat, frog TRPV3 is reportedly activated by cold. Intrigued by the potential implications of these opposing responses to temperature for the mechanism of temperature-dependent gating, we cloned Xenopus laevis TRPV3 and functionally expressed it in both mammalian cell lines and Xenopus oocytes. We found that, when expressed in mammalian cells, the recombinant channel lacks the reported cold sensitivity; rather, it is activated by temperatures >50°C. Furthermore, when expressed in mammalian cells, the frog orthologue shows other features characteristic of mammalian TRPV3, including activation by the agonist 2-aminoethoxydiphenyl borate and an increased response with repeated stimulation. We detected both heat- and cold-activated currents in Xenopus oocytes expressing the recombinant frog TRPV3 channel. However, cold-activated currents were also apparent in control oocytes lacking recombinant TRPV3. Our data indicate that frog TRPV3 resembles its mammalian orthologues in terms of its thermosensitivity and is intrinsically activated by heat. Thus, all known vanilloid receptors are activated by heat. Our data also show that Xenopus oocytes contain endogenous receptors that are activated by cold, and suggest that cold sensitivity of TRP channels established using Xenopus oocytes as a functional expression system may need to be revisited.  相似文献   

12.
The Slo3 gene encodes a high conductance potassium channel, which is activated by both voltage and intracellular alkalinization. Slo3 is specifically expressed in mammalian sperm cells, where it gives rise to pH-dependent outwardly rectifying K+ currents. Sperm Slo3 is the main current responsible for the capacitation-induced hyperpolarization, which is required for the ensuing acrosome reaction, an exocytotic process essential for fertilization. Here we show that in intact spermatozoa and in a heterologous expression system, the activation of Slo3 currents is regulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Depletion of endogenous PIP2 in inside-out macropatches from Xenopus oocytes inhibited heterologously expressed Slo3 currents. Whole-cell recordings of sperm Slo3 currents or of Slo3 channels co-expressed in Xenopus oocytes with epidermal growth factor receptor, demonstrated that stimulation by epidermal growth factor (EGF) could inhibit channel activity in a PIP2-dependent manner. High concentrations of PIP2 in the patch pipette not only resulted in a strong increase in sperm Slo3 current density but also prevented the EGF-induced inhibition of this current. Mutation of positively charged residues involved in channel-PIP2 interactions enhanced the EGF-induced inhibition of Slo3 currents. Overall, our results suggest that PIP2 is an important regulator for Slo3 activation and that receptor-mediated hydrolysis of PIP2 leads to inhibition of Slo3 currents both in native and heterologous expression systems.  相似文献   

13.
In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl currents by acting through membrane-bound receptors. External application of 50 μM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-μM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xβ), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xβ, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein α subunits that were identified in Xenopus laevis; Gqα, G11α, G0α, and Gi1α. Among AS-ODNs against the Gαs tested, AS-Gqα and AS-Gi1α to S1P and AS-Gqα and AS-G11α to LPA specifically reduced current responses, respectively, to about 20–30% of controls. These results demonstrate that LPA and S1P, although they have similar structural features, release intracellular Ca2+ from the IP3-sensitive pool, use different components in their signal transduction pathways in Xenopus oocytes. J. Cell. Physiol. 176:412–423, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
A coupled enzymatic assay for diadenosine 5′, 5?-P1, P4-tetraphosphate(Ap4A) is described. Luciferin-luciferase produces light by consuming the ATP that is liberated by the action of snake venom phosphodiesterase on Ap4A. The procedure is linear with Ap4A levels ranging from 0.02 to 2 pmol. The pool size of Ap4A in human leukemic cells was determined by acid extraction of the cells followed by initial fractionation of the extract on a DEAE-cellulose column and application of the phosphodiesterase luciferin-luciferase coupled assay. The method was also used to follow the purification of a diadenosine tetraphosphate-degrading enzyme (diadenosine tetraphosphatase, Ap4Aase) from mouse ascites tumor cells. The partially purified enzyme had a Km of 2.8 μm for Ap4A when applying the coupled enzymatic assay for the determination of initial rate kinetics.  相似文献   

15.
Nucleotides play an important role in brain development and may exert their action via ligand-gated cationic channels or G protein-coupled receptors. Patch-clamp measurements indicated that in contrast to AMPA, ATP did not induce membrane currents in human midbrain derived neuronal progenitor cells (hmNPCs). Various nucleotide agonists concentration-dependently increased [Ca2+]i as measured by the Fura-2 method, with the rank order of potency ATP > ADP > UTP > UDP. A Ca2+-free external medium moderately decreased, whereas a depletion of the intracellular Ca2+ storage sites by cyclopiazonic acid markedly depressed the [Ca2+]i transients induced by either ATP or UTP. Further, the P2Y1 receptor antagonistic PPADS and MRS 2179, as well as the nucleotide catalyzing enzyme apyrase, allmost abolished the effects of these two nucleotides. However, the P2Y1,2,12 antagonistic suramin only slightly blocked the action of ATP, but strongly inhibited that of UTP. In agreement with this finding, UTP evoked the release of ATP from hmNPCs in a suramin-, but not PPADS-sensitive manner. Immunocytochemistry indicated the co-localization of P2Y1,2,4-immunoreactivities (IR) with nestin-IR at these cells. In conclusion, UTP may induce the release of ATP from hmNPCs via P2Y2 receptor-activation and thereby causes [Ca2+]i transients by stimulating a P2Y1-like receptor.  相似文献   

16.
Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P1,Pn-diadenosine 5′-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ∼10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.  相似文献   

17.
Recently, we and others have shown that agonist potencies at some, but not all, G protein-coupled receptors are voltage-sensitive. Several of those studies employed electrophysiology assays in Xenopus oocytes with G protein-coupled potassium channels as a readout. Using this assay, we have now obtained evidence that voltage-sensitivity at the dopamine D2S receptor is agonist-specific. Whereas the potency of dopamine at the D2S receptor is decreased by depolarization, the potencies of β-phenethylamine, p- and m-tyramine are voltage-insensitive. Furthermore, both monohydroxylated and non-hydroxylated N,N-dipropyl-2-aminotetralin compounds are voltage-sensitive. Differential activation of G protein subtypes or differential ratios between effector and active G protein do not underlie this agonist-selective voltage-sensitivity. This is the first demonstration of voltage-sensitive and voltage-insensitive behaviour of different agonists acting via the same receptor.  相似文献   

18.
Two-pore-domain potassium (K2P) channels mediate K+ background currents that stabilize the resting membrane potential and contribute to repolarization of action potentials in excitable cells. The functional significance of K2P currents in cardiac electrophysiology remains poorly understood. Danio rerio (zebrafish) may be utilized to elucidate the role of cardiac K2P channels in vivo. The aim of this work was to identify and functionally characterize a zebrafish otholog of the human K2P10.1 channel. K2P10.1 orthologs in the D. rerio genome were identified by database analysis, and the full zK2P10.1 coding sequence was amplified from zebrafish cDNA. Human and zebrafish K2P10.1 proteins share 61% identity. High degrees of conservation were observed in protein domains relevant for structural integrity and regulation. K2P10.1 channels were heterologously expressed in Xenopus oocytes, and currents were recorded using two-electrode voltage clamp electrophysiology. Human and zebrafish channels mediated K+ selective background currents leading to membrane hyperpolarization. Arachidonic acid, an activator of hK2P10.1, induced robust activation of zK2P10.1. Activity of both channels was reduced by protein kinase C. Similar to its human counterpart, zK2P10.1 was inhibited by the antiarrhythmic drug amiodarone. In summary, zebrafish harbor K2P10.1 two-pore-domain K+ channels that exhibit structural and functional properties largely similar to human K2P10.1. We conclude that the zebrafish represents a valid model to study K2P10.1 function in vivo.  相似文献   

19.
A highly sensitive enzymatic assay for diadenosine 5′,5?-P1,P3-triphosphate (Ap3A) has been established on the basis of the coupled luminescence assay for diadenosine 5′,5?-P1,P3-tetraphosphate (A. Ogilvie (1981)Anal. Biochem.115, 302–307). Snake venom phosphodiesterase splits Ap3A into AMP plus ADP which can be measured in a luminescence reaction containing pyruvate kinase, phosphoenolpyruvate and luciferin-luciferase. The procedure is linear with Ap3A levels ranging from 0.1 to 2 pmol. The assay has been used to measure Ap3A in various eukaryotic cells after ion-exchange chromatography and high-performance liquid chromatography of acidic extracts of the cells. The level of diadenosine triphosphate was higher in all instances than the level of diadenosine tetraphosphate. When growing in the abdominal cavity of mice, Ehrlich ascites tumor cells contained high amounts of Ap3A (0.1 nmol106cells), allowing direct optical determination in the HPLC chromatography. The quantitative measurement of Ap3A with the luminescence assay gave identical results. Ap3A extracted from Ehrlich cells was also chromatographed with authentic nucleotide in two thin-layer systems providing additional proof for the existence of Ap3A in biological material.  相似文献   

20.
Abstract

5-HT, receptor-mediated ion currents evoked by the full agonists 5-hydroxy-tryptamine (5-HT), quatemary 5-HT (5-HTQ), meta-chlorophenylbiguanide (mCPBG) and the partial agonists dopamine and tryptamine have been investigated in whole-cell voltage clamp experiments on N1E-115 mouse neuroblastoma cells. All agonists desensitize the 5-HT3 receptor completely with a steep concentration dependence and a potency order of: mCPBG > 5-HTQ = 5-HT >> tryptamine > dopamine. The time course of recovery from desensitization depends on the agonist used. Recovery from partial agonist-induced desensitization is single exponential. whereas the desensitization induced by full agonists recovers with sigmoid kinetics, suggesting at least 3 transitions between 4 states. It is concluded that full and partial agonists induce distinct desensitized states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号