首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We identified an operon in Listeria monocytogenes EGD with high levels of sequence similarity to the operons encoding the OpuC and OpuB compatible solute transporters from Bacillus subtilis, which are members of the ATP binding cassette (ABC) substrate binding protein-dependent transporter superfamily. The operon, designated opuC, consists of four genes which are predicted to encode an ATP binding protein (OpuCA), an extracellular substrate binding protein (OpuCC), and two membrane-associated proteins presumed to form the permease (OpuCB and OpuCD). The operon is preceded by a potential SigB-dependent promoter. An opuC-defective mutant was generated by the insertional inactivation of the opuCA gene. The mutant was impaired for growth at high osmolarity in brain heart infusion broth and failed to grow in a defined medium. Supplementation of the defined medium with peptone restored the growth of the mutant in this medium. The mutant was found to accumulate the compatible solutes glycine betaine and choline to same extent as the parent strain but was defective in the uptake of L-carnitine. We conclude that the opuC operon in L. monocytogenes encodes an ABC compatible solute transporter which is capable of transporting L-carnitine and which plays an important role in osmoregulation in this pathogen.  相似文献   

3.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

4.
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the food environment and, after ingestion, within the animal host. Growth at high salt concentrations is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We characterized L. monocytogenes LO28 strains with single, double, and triple deletions in the osmolyte transport systems BetL, Gbu, and OpuC. When single deletion mutants were tested, Gbu was found to have the most drastic effect on the rate of growth in brain heart infusion (BHI) broth with 6% added NaCl. The highest reduction in growth rate was found for the triple mutant LO28BCG (DeltabetL DeltaopuC Deltagbu), although the mutant was still capable of growth under these adverse conditions. In addition, we analyzed the growth and survival of this triple mutant in an animal (murine) model. LO28BCG showed a significant reduction in its ability to cause systemic infection following peroral coinoculation with the wild-type parent. Altering OpuC alone resulted in similar effects (R. D. Sleator, J. Wouters, C. G. M. Gahan, T. Abee, and C. Hill, Appl. Environ. Microbiol. 67:2692-2698, 2001), leading to the assumption that OpuC may play an important role in listerial pathogenesis. Analysis of the accumulation of osmolytes revealed that betaine is accumulated up to 300 micro mol/g (dry weight) when grown in BHI broth plus 6% NaCl whereas no carnitine accumulation could be detected. Radiolabeled-betaine uptake studies revealed an inability of BGSOE (DeltabetL Deltagbu) and LO28BCG to transport betaine. Indeed, for LO28BCG, no accumulated betaine was found, but carnitine was accumulated in this strain up to 600 micro mol/g (dry weight) of cells, indicating the presence of a possible fourth osmolyte transporter.  相似文献   

5.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

6.
Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.  相似文献   

7.
The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC. We investigated the specificity of each transporter towards each compatible solute at 4 degrees C by examining mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state compatible solute accumulation data together with growth rate experiments demonstrated that under cold stress glycine betaine transport is primarily mediated by Gbu and that Gbu-mediated betaine uptake results in significant growth stimulation of chill-stressed cells. BetL and OpuC can serve as minor porters for the uptake of betaine, and their action is capable of providing a small degree of cryotolerance. Under cold stress, carnitine transport occurs primarily through OpuC and results in a high level of cryoprotection. Weak carnitine transport occurs via Gbu and BetL, conferring correspondingly weak cryoprotection. No other transporter in L. monocytogenes 10403S appears to be involved in transport of either compatible solute at 4 degrees C, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown at that temperature.  相似文献   

8.
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the food environment and, after ingestion, within the animal host. Growth at high salt concentrations is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We characterized L. monocytogenes LO28 strains with single, double, and triple deletions in the osmolyte transport systems BetL, Gbu, and OpuC. When single deletion mutants were tested, Gbu was found to have the most drastic effect on the rate of growth in brain heart infusion (BHI) broth with 6% added NaCl. The highest reduction in growth rate was found for the triple mutant LO28BCG (ΔbetL ΔopuC Δgbu), although the mutant was still capable of growth under these adverse conditions. In addition, we analyzed the growth and survival of this triple mutant in an animal (murine) model. LO28BCG showed a significant reduction in its ability to cause systemic infection following peroral coinoculation with the wild-type parent. Altering OpuC alone resulted in similar effects (R. D. Sleator, J. Wouters, C. G. M. Gahan, T. Abee, and C. Hill, Appl. Environ. Microbiol. 67:2692-2698, 2001), leading to the assumption that OpuC may play an important role in listerial pathogenesis. Analysis of the accumulation of osmolytes revealed that betaine is accumulated up to 300 μmol/g (dry weight) when grown in BHI broth plus 6% NaCl whereas no carnitine accumulation could be detected. Radiolabeled-betaine uptake studies revealed an inability of BGSOE (ΔbetL Δgbu) and LO28BCG to transport betaine. Indeed, for LO28BCG, no accumulated betaine was found, but carnitine was accumulated in this strain up to 600 μmol/g (dry weight) of cells, indicating the presence of a possible fourth osmolyte transporter.  相似文献   

9.
The food-borne pathogen Listeria monocytogenes proliferates at refrigeration temperatures, rendering refrigeration ineffective in the preservation of Listeria-contaminated foods. The uptake and intracellular accumulation of the potent compatible solutes glycine betaine and carnitine has been shown to be a key mediator of the pathogen's cold-tolerant phenotype. To date, three compatible solute systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and the carnitine transporter OpuC. We investigated the specificity of each transporter towards each compatible solute at 4°C by examining mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state compatible solute accumulation data together with growth rate experiments demonstrated that under cold stress glycine betaine transport is primarily mediated by Gbu and that Gbu-mediated betaine uptake results in significant growth stimulation of chill-stressed cells. BetL and OpuC can serve as minor porters for the uptake of betaine, and their action is capable of providing a small degree of cryotolerance. Under cold stress, carnitine transport occurs primarily through OpuC and results in a high level of cryoprotection. Weak carnitine transport occurs via Gbu and BetL, conferring correspondingly weak cryoprotection. No other transporter in L. monocytogenes 10403S appears to be involved in transport of either compatible solute at 4°C, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown at that temperature.  相似文献   

10.
Yersinia enterocolitica is a gram-negative, food-borne pathogen that can grow in 5% NaCl and at refrigerator temperatures. In this report, the compatible solutes (osmolytes) which accumulate intracellularly and confer the observed osmotic tolerance to this pathogen were identified. In minimal medium, glutamate was the only detectable osmolyte that accumulated in osmotically stressed cells. However, when the growth medium was supplemented with glycine betaine, dimethylglycine, or carnitine, the respective osmolyte accumulated intracellularly to high levels and the growth rates of the osmotically stressed cultures improved from 2.4- to 3.5-fold. Chill stress also stimulated the intracellular accumulation of glycine betaine, but the growth rate was only slightly improved by this osmolyte. Both osmotic upshock and temperature downshock stimulated the rate of uptake of [(sup14)C]glycine betaine by more than 30-fold, consistent with other data indicating that the osmolytes are accumulated from the growth medium via transport.  相似文献   

11.
Natural-abundance (13)C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na(+) content and confer a much higher salt tolerance to T. halophila.  相似文献   

12.
13.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Osteras, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na(+)/H(+) antiporters in B. japonicum could explain its very high Na(+) sensitivity.  相似文献   

14.
15.
16.
Glycine betaine relieved sodium chloride-mediated inhibition of growth in Azospirillum lipoferum ATCC 29708. 35S-methionine labelling of proteins after salinity up-shock revealed strong induction of a 30 kDa protein which cross-reacted with the anti-glycine betaine binding protein antibody from Escherichia coli. This suggested that A. lipoferum had a salinity-induced ProU-like high-affinity glycine betaine transport system. A genomic library of A. lipoferum ATCC 29708 was screened for the proU-like gene by complementation of a proU mutant of E. coli. Four recombinant cosmids, capable of restoring growth of the proU mutant on plates containing 600 mM NaCl and 1 mM glycine betaine were selected. Selected recombinant cosmids hybridized with a proU gene probe from E. coli. Complementation of E. coli proU mutant with the A. lipoferum genomic DNA was evident by the ability of proU mutant (containing selected recombinant cosmids) to grow on minimal medium supplemented with 600 mM NaCl and 1 mM glycine betaine.  相似文献   

17.
Natural-abundance 13C-nuclear magnetic resonance was used to probe the intracellular organic solute content of the moderately halophilic bacterium Tetragenococcus halophila. When grown in complex growth media supplemented or not with NaCl, T. halophila accumulates glycine betaine and carnitine. Unlike other moderate halophiles, T. halophila was not able to produce potent osmoprotectants (such as ectoines and glycine betaine) through de novo synthesis when cultured in defined medium under hyperosmotic constraint. Addition of 2 mM carnitine, glycine betaine, or choline to defined medium improved growth parameters, not only at high salinity (up to 2.5 M NaCl) but also in media lacking NaCl. These compounds were taken up when available in the surrounding medium. The transport activity occurred at low and high salinities and seems to be constitutive. Glycine betaine and carnitine were accumulated by T. halophila in an unmodified form, while exogenously provided choline led to an intracellular accumulation of glycine betaine. This is the first evidence of the existence of a choline-glycine betaine pathway in a lactic acid bacterium. An assay showed that the compatible solutes strikingly repressed the accumulation of glutamate and slightly increased the intracellular potassium level only at high salinity. Interestingly, osmoprotectant-treated cells were able to maintain the intracellular sodium concentration at a relatively constant level (200 to 300 nmol/mg [dry weight]), independent of the NaCl concentration of the medium. In contrast, in the absence of osmoprotectant, the intracellular sodium content increased sharply from 200 to 2,060 nmol/mg (dry weight) when the salinity of the medium was raised from 1 to 2 M. Indeed, the imported compatible solutes play an actual role in regulating the intracellular Na+ content and confer a much higher salt tolerance to T. halophila.  相似文献   

18.
19.
The food-borne pathogen Listeria monocytogenes is notable for its ability to grow under osmotic stress and at low temperatures. It is known to accumulate the compatible solutes glycine betaine and carnitine from the medium in response to osmotic or chill stress, and this accumulation confers tolerance to these stresses. Two permeases that transport glycine betaine have been identified, both of which are activated by hyperosmotic stress and one of which is activated by low temperature. An osmotically activated transporter for carnitine, OpuC, has also been identified. We have isolated a Tn917-LTV3 insertional mutant that could not be rescued from hyperosmotic stress by exogenous carnitine. The mutant, LTS4a, grew indistinguishably from a control strain (DP-L1044) in the absence of stress or in the absence of carnitine, but DP-L1044 grew substantially faster under osmotic or chill stress in the presence of carnitine. LTS4a was found to be strongly impaired in KCl-activated as well as chill-activated carnitine transport. 13C nuclear magnetic resonance spectroscopy of perchloric acid extracts showed that accumulation of carnitine by LTS4a was negligible under all conditions tested. Direct sequencing of LTS4a genomic DNA with a primer based on Tn917-LTV3 yielded a 487-bp sequence, which allowed us to determine that the opuC operon had been interrupted by the transposon. It can be concluded that opuC encodes a carnitine transporter that can be activated by either hyperosmotic stress or chill and that the transport system plays a significant role in the tolerance of L. monocytogenes to both forms of environmental stress.  相似文献   

20.
Among the Rhizobiaceae, Bradyrhizobium japonicum strain USDA110 appears to be extremely salt sensitive, and the presence of glycine betaine cannot restore its growth in medium with an increased osmolarity (E. Boncompagni, M. Østerås, M. C. Poggi, and D. Le Rudulier, Appl. Environ. Microbiol. 65:2072-2077, 1999). In order to improve the salt tolerance of B. japonicum, cells were transformed with the betS gene of Sinorhizobium meliloti. This gene encodes a major glycine betaine/proline betaine transporter from the betaine choline carnitine transporter family and is required for early osmotic adjustment. Whereas betaine transport was absent in the USDA110 strain, such transformation induced glycine betaine and proline betaine uptake in an osmotically dependent manner. Salt-treated transformed cells accumulated large amounts of glycine betaine, which was not catabolized. However, the accumulation was reversed through rapid efflux during osmotic downshock. An increased tolerance of transformant cells to a moderate NaCl concentration (80 mM) was also observed in the presence of glycine betaine or proline betaine, whereas the growth of the wild-type strain was totally abolished at 80 mM NaCl. Surprisingly, the deleterious effect due to a higher salt concentration (100 mM) could not be overcome by glycine betaine, despite a significant accumulation of this compound. Cell viability was not significantly affected in the presence of 100 mM NaCl, whereas 75% cell death occurred at 150 mM NaCl. The absence of a potential gene encoding Na+/H+ antiporters in B. japonicum could explain its very high Na+ sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号