首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ureolytic Escherichia coli strains are uncommon clinical isolates. The urease phenotype in a large percentage of these isolates is unstable and lost upon storage. We examined two urease-positive uropathogenic E. coli isolates that give off urease-negative segregants and determined that the urease phenotype was chromosomally encoded. The urease phenotype was cloned from E. coli 1021 and found to be encoded on a 9.4-kilobase HindIII restriction fragment. Transposon mutagenesis indicated that at least 3.2 kilobases of this fragment were necessary for production of urease. The urease recombinant plasmid pURE coded for at least four insert-specific polypeptides as determined by maxicell analysis. Disruption of the region encoding two of these polypeptides (67 and 27 kilodaltons) abolished urease activity. Analysis by Southern hybridization of urease-positive E. coli 1021 and seven independently isolated urease-negative segregants showed that a DNA rearrangement was associated with the urease-negative phenotype.  相似文献   

2.
A fragment of Bacillus subtilis DNA coding for xylose isomerase and xylulokinase was isolated from a BamHI restriction pool by complementation of an isomerase-defective Escherichia coli strain. The spontaneous insertion of IS5, which occurred during the very slow growth of the E. coli xyl- cells on xylose, allowed the expression of the cloned Bacillus genes in E. coli. Without IS5 insertion, the xylose genes were inactive in E. coli. Deletion experiments indicated that the control of the expression resides within a 270-bp long region at the right end of IS5. Deletion of this region led to a loss of expression, which could be restored by insertion of the lacUV5 promoter fragment at the deletion site. Sequence analysis showed that the site of IS5 insertion is 195 bp upstream from the putative ATG initiation codon of the xylose isomerase structural gene. This ATG is preceded by a ribosome binding sequence and two hexamers also found in promoter regions of other Bacillus genes. Deletion and mutagenesis analysis led to a preliminary map of the Bacillus xylose operon.  相似文献   

3.
Studies with two uropathogenic urease-producing Escherichia coli strains, 1021 and 1440, indicated that the urease genes of each are distinct. Recombinant plasmids encoding urease activity from E. coli 1021 and 1440 differed in their restriction endonuclease cleavage sites and showed minimal DNA hybridization under stringent conditions. The polypeptides encoded by the DNA fragments containing the 1021 and 1440 urease loci differed in electrophoretic mobility under reducing conditions. Regulation of urease gene expression differed in the two ureolytic E. coli. The E. coli 1021 locus is probably chromosomally encoded and has DNA homology to Klebsiella, Citrobacter, Enterobacter, and Serratia species and to about one-half of the urease-producing E. coli tested. The E. coli 1440 locus is plasmid encoded; plasmids with DNA homology to the 1440 locus probe were found in urease-producing Salmonella spp., Providencia stuartii, and two E. coli isolates. In addition, the 1440 urease probe was homologous to Proteus mirabilis DNA.  相似文献   

4.
5.
ADE1 gene of Saccharomyces cerevisiae codes for the primary structure of SAICAR-synthetase. Mutational changes of ADE1 gene result in the accumulation of red pigment in cells. Colour differences, thus, serve as a basis for the selection of mutants or transformants. ADE1 gene was cloned as a 4.0 kb HindIII fragment of yeast DNA in a shuttle vector by complementing the ade1 mutation in yeast. The study of ADE1 gene expression in Escherichia coli showed that the 4.0 kb fragment containing the ADE1 gene does not complement purC mutations in E. coli. However, prototrophic colonies appeared at a frequency of 10(-7)-10(-8) after incubating clones bearing the recombinant plasmid with ADE1 gene on selective media. The plasmid DNA isolated from such clones complements the purC mutation in E. coli and the ade1 mutation in S. cerevisiae. Structural analysis of the plasmid demonstrated that the cloned DNA fragment contained an additional insertion of the bacterial origin. Further restriction enzyme analysis proved the insertion to be the bacterial element IS1. Expression of the cloned ADE1 gene in S. cerevisiae is controlled by its own promoter, whereas in E. coli it is controlled by the IS1 bacterial element.  相似文献   

6.
Summary A DNA fragment from the methanogenic archaebacterium Methanococcus voltae, when cloned into the PstI site of the plasmid vector pBR322, complements the Escherichia coli argG mutation strongly or weakly depending on its orientation. Faster-growing variants derived from a strain containing the poorly expressed fragment were found to harbor plasmids which had undergone genetic rearrangements. Some of the plasmids were shown to have acquired an insertion element (IS2 or IS5), derived from the E. coli chromosome, close to the region essential for complementing activity. Other plasmids exhibited no homology with E. coli chromosomal DNA. These were found to represent multimeric forms of the parental plasmid in which 2–3 kb of DNA between the tet promoter and the argG-complementing region had been deleted. Growth rates of the variant strains in the absence of arginine varied significantly, suggesting differences in efficiency of activation of the cloned DNA.  相似文献   

7.
A DNA fragment carrying the genes coding for EcoO109I endonuclease and EcoO109I methylase, which recognize the nucleotide sequence 5'-(A/G)GGNCC(C/T)-3', was cloned from the chromosomal DNA of Escherichia coli H709c. The EcoO109I restriction-modification (R-M) system was found to be inserted between the int and psu genes from satellite bacteriophage P4, which were lysogenized in the chromosome at the P4 phage attachment site of the corresponding leuX gene observed in E. coli K-12 chromosomal DNA. The sid gene of the prophage was inactivated by insertion of one copy of IS21. These findings may shed light on the horizontal transfer and stable maintenance of the R-M system.  相似文献   

8.
Aerobactin genes in clinical isolates of Escherichia coli.   总被引:9,自引:3,他引:6       下载免费PDF全文
The location of the aerobactin gene complex on either the chromosome or plasmid was determined in eight aerobactin-positive clinical isolates of Escherichia coli by Southern hybridization analysis, using as probes the cloned aerobactin genes from the ColV-K30 plasmid. The aerobactin genes were in two cases detected on large plasmids, whereas in the other strains the aerobactin genes are most likely located on the chromosome. Restriction mapping revealed only slight variations in the structural genes and an at least 3.4-kilobase-long upstream region conserved in all three plasmid-coded systems. A 7.7-kilobase HindIII fragment upstream and adjacent to the 16.3-kilobase HindIII fragment carrying the complete aerobactin system was cloned from the ColV-K30 plasmid. Fine-structure restriction mapping identified the left insertion sequence in the upstream region as IS1, in inverted orientation to the IS1 element downstream from the aerobactin operon. The upstream and downstream sequences of IS1 appear to have perfect homology, as indicated by S1 nuclease resistance of a 760-base-pair DNA duplex formed by both IS1 elements.  相似文献   

9.
The urease of thermophilic Bacillus sp. strain TB-90 is composed of three subunits with molecular masses of 61, 12, and 11 kDa. By using synthetic oligonucleotide probes based on N-terminal amino acid sequences of each subunit, we cloned a 3.2-kb EcoRI fragment of TB-90 genomic DNA. Moreover, we cloned two other DNA fragments by gene walking starting from this fragment. Finally, we reconstructed in vitro a 6.2-kb DNA fragment which expressed catalytically active urease in Escherichia coli by combining these three DNA fragments. Nucleotide sequencing analysis revealed that the urease gene complex consists of nine genes, which were designed ureA, ureB, ureC, ureE, ureF, ureG, ureD, ureH, and ureI in order of arrangement. The structural genes ureA, ureB, and ureC encode the 11-, 12-, and 61-kDa subunits, respectively. The deduced amino acid sequences of UreD, UreE, UreF, and UreG, the gene products of four accessory genes, are homologous to those of the corresponding Ure proteins of Klebsiella aerogenes. UreD, UreF, and UreG were essential for expression of urease activity in E. coli and are suggested to play important roles in the maturation step of the urease in a co- and/or posttranslational manner. On the other hand, UreH and UreI exhibited no significant similarity to the known accessory proteins of other bacteria. However, UreH showed 23% amino acid identity to the Alcaligenes eutrophus HoxN protein, a high-affinity nickel transporter.  相似文献   

10.
We describe a novel type of transposon in the tetracycline resistance plasmid pYM103, a derivative of pSC101 carrying a single copy of an insertion element IS102. The new transposons we found were identified as DNA segments, approximately 6 kb (Tn1021) and 10 kb (Tn1022) in length, able to mediate the cointegration of pYM1O3 with plasmid Col E1. The resulting cointegrate contains either of these pYM1O3 segments duplicated in a direct orientation at the junctions of the parent plasmids. A direct duplication of a 9 bp sequence at the target site in Col E1 is found at the junctions for cointegration. Both transposons have IS1O2 at one end and also contain different lengths of the pYM103 DNA adjacent to IS102, including the tetracycline resistance gene. Each transposon contains terminal inverted repeats of a short nucleotide sequence. These results and the fact that IS102 can itself mediate plasmid cointegration, giving rise to a duplication of a 9 bp target sequence, indicate that IS102 is responsible for generation of Tn1021 and Tn1022. They are quite different from the common IS-associated transposons, which are always flanked by two copies of an IS element, and may be similar to transposons such as those of the Tn3 family and phage Mu.  相似文献   

11.
Ureaplasma urealyticum is a pathogenic ureolytic mollicute which colonizes the urogenital tracts of humans. A genetic polymorphism between the two biotypes of U. urealyticum at the level of the urease genes was found. The urease gene cluster from a biotype 1 representative of U. urealyticum (serotype I) was cloned and sequenced. Seven genes were found, with ureA, ureB, and ureC encoding the structural subunits and ureE, ureF, ureG, and a truncated ureI) gene encoding accessory proteins. Urease expression was not obtained when the plasmid containing these genes was incorporated into an opal suppressor strain of Escherichia coli, although this enzymatic activity was found in the same E. coli strain transformed with pC6b, a plasmid with previously cloned urease genes from the U. urealyticum T960 strain of biotype 2 (serotype 8). Although there are 12 TGA triplets encoding tryptophan within urease genes, the level of expression obtained was comparable to the levels reported for other bacterial genes expressed in E. coli. Nested deletion experiments allowed us to demonstrate that ureD is necessary for urease activity whereas another open reading frame located downstream is not. The promoter for ureA and possibly other urease genes was identified for both serotypes.  相似文献   

12.
13.
A reference collection of natural isolates of Escherichia coli has been studied in order to determine the distribution, abundance and joint occurrence of DNA insertion elements IS4 and IS5. Among these isolates, 36% were found to contain IS4 and 30% were found to contain IS5. Among strains containing IS4 the mean number of copies per strain was 4.4 +/- 0.8; the comparable figure for IS5 was 3.7 +/- 1.0. Although the presence of the elements among the isolates was independent, among those isolates containing both IS4 and IS5, there was a significant negative correlation in the number of copies of the elements. The reference collection was also studied for the presence of the DNA sequences flanking the single copy of IS4 in the chromosome of E. coli K12. Homologous sequences were found in only 26% of the isolates. The sequences flanking the IS4 invariably occur together, and their presence is significantly correlated with the presence of IS4. In eight of the strains that carry these flanking sequences, an IS4 is located between them, and the sequences are present at the homologous position as in the K12 strain. We suggest that IS4 and its flanking sequences share a common mechanism of dissemination, such as plasmids, and we present evidence that they are included in a much larger transposable element.  相似文献   

14.
The 1.45 kb promoter containing HindIII fragment of Bacillus thuringiensis DNA promotes the expression of the tet gene of recombinant pPBT9 plasmid in Escherichia coli cells. Spontaneous mutants of this plasmid were isolated and analysed. They are responsible for an increase in the level of tetracycline resistance. This 3-fold increase resulted from integration of IS1 element into the bacillar promoter containing HindIII fragment, which led to formation of a mutant pPBT9::IS1 plasmid. The IS sequence integrated was defined as an IS1 element of the E. coli HB101 chromosomal DNA. The integration site of IS1 was localized.  相似文献   

15.
O Amster  D Salomon    A Zamir 《Nucleic acids research》1982,10(15):4525-4542
Evidence is presented indicating that a novel DNA sequence arrangement generated by in vitro recombination may elicit high frequency transpositions of IS elements. A 109 bp Bam HI fragment of the cDNA for the immunoglobulin kappa light chain from MOPC 321 myeloma was cloned into the Bam HI site of pBR313. The cloned fragment extends from the codon for Gly 57 to the V-J junction. Insertions of IS1 or IS5 were identified in 6 of 50 plasmid DNAs isolated from freshly transformed clones. Additional transposition events were detected after subculturing for several growth cycles. Three independent insertions of IS1 occurred in the promoter region of the TcR operon. All IS5 and the remaining IS1 insertions were located in the TcR region upstream to the cloned DNA sequence. Sequences homologous to the ends of IS1, or corresponding to the consensus sequence at the target site of IS5 are present near the estimated sites of insertion of IS1 or IS5 respectively. Bacteria harboring recombinant plasmids carrying the cloned DNA in either orientation grew at a reduced rate relative to cells harboring pBR313, suggesting that fused gene products made from the two types of plasmid were inhibitory to cell growth. IS insertions, which relieved this inhibitory effect and thereby provided a selective advantage, were found exclusively in plasmids carrying the cloned DNA in only one of the two orientations. The fact that IS elements were not observed in the other type of recombinant plasmid indicates that selective pressure alone is not sufficient to account for the frequent IS insertions observed and that sequences at a distance from the site of IS insertion may be critical in the regulation of transposition frequency.  相似文献   

16.
We have studied the spatial distribution of IS1 elements in the genomes of natural isolates comprising the ECOR reference collection of Escherichia coli. We find evidence for nonrandomness at three levels. Many pairs of IS1 elements are in much closer proximity (< 10 kb) than can be accounted for by chance. IS1 elements in close proximity were identified by long-range PCR amplification of the genomic sequence between them. Each amplified region was sequenced and its map location determined by database screening of DNA hybridization. Among the ECOR strains with at least two IS1 elements, 54% had one or more pairs of elements separated by < 10 kb. We propose that this type of clustering is a result of "local hopping," in which we assume that a significant proportion of tranposition events leads to the insertion of a daughter IS element in the vicinity of the parental element. A second level of nonrandomness is found in strains with a modest number of IS1 elements that are mapped through the use of inverse PCR to amplify flanking genomic sequences: in these strains, the insertion sites tend to be clustered over a smaller region of chromosome than would be expected by chance. A third level of nonrandomness is observed in the composite distribution of IS elements across strains: among 20 mapped IS1 elements, none were found in the region of 48-77 minutes, a significant gap. One region of the E. coli chromosome, at 98 min, had a cluster of IS1 elements in seven ECOR strains of diverse phylogenetic origin. We deduce from sequence analysis that this pattern of distribution is a result of initial insertion in the most recent common ancestor of these strains and therefore not a hot spot of insertion. Analysis using long- range PCR with primers for IS2 and IS3 also yielded pairs of elements in close proximity, suggesting that these elements may also occasionally transpose by local hopping.   相似文献   

17.
大肠杆菌MG1655菌株ERIC-PCR图谱主带序列组成分析   总被引:19,自引:1,他引:19  
ERIC-PCR已经在细菌分类,鉴定及混合菌群分析中得到广泛应用,但对其产物形成规律的认识仍存在分歧,以大肠杆菌MG1655为对象,对其ERIC-PCR指纹图谱中1.1kb主带中的DNA片段进行了克隆,测序,基因组定位以及引物匹配分析。结果表明,这条1.1kb主带由分布在基因组中不同位置的3种序列不同的片段组成,各片段的丰度差异较大,最高为97.89%;3种片段中的2种所在的基因组区域仅一端含有ERIC序列,推测对含有ERIC序列的基因组DNA进行扩增时,ERIC-PCR是一种非随机扩增。  相似文献   

18.
The nucleotide sequence of IS5 from Escherichia coli   总被引:24,自引:0,他引:24  
B Schoner  M Kahn 《Gene》1981,14(3):165-174
A 3-kb fragment of Haemophilus haemolyticus DNA which carries the HhaII restriction (r) and modification (m) genes has been cloned into the PstI site of pBR322 (Mann et al., 1978). When propagated in Escherichia coli, it was observed that spontaneous insertions of IS5 inactivated the restriction gene, producing r- mutants at a frequency of 10(-6). Electron microscopy, restriction-site mapping and sequence analysis of two r- plasmids have demonstrated the presence of IS5 at a single target site in both possible orientations. The complete nucleotide sequence of IS5 has been determined. It is 1195 bp long and has inverted terminal repeats of 16 bp. The target site for IS5 in this plasmid is 5'-CTAG. Approx. ten copies of IS5 were found to be present at about the same locations on the E. coli chromosome in various K-12 strains, using Southern hybridization analysis.  相似文献   

19.
A physical map for the genome of E. coli K12 strain BHB2600 was constructed by use of 570 cloned DNA elements (CDEs) withdrawn from a cosmid library. Dot blot hybridisation was applied to establish contig interrelations with subsequent fine mapping achieved by analysis of EcoR1 restriction patterns on Southern blots. The derived map covers nearly 95% of the E. coli genome resulting in 12 minor gaps. It may be compared to the almost complete map for strain W3110 of Kohara et al. (1). Except for one tiny gap (lpp,36.5') remaining gaps in BHB2600 do not coincide with those in W3110 so that both maps complement each other establishing an essentially complete clone represented map. Besides numerous minute differences (site and fragment gains and losses) both strains harbour at differing positions extended rearrangements flanked by mutually inverted repetitive elements, in our case insertion elements (IS1 and IS5).  相似文献   

20.
Salmonella enteritidis is now the most common Salmonella serovar in many countries. We have used cloned DNA probes to analyze genome interrelationships between strains chosen to represent the current S. enteritidis pandemic, and included designated type strains of the seven subspecies of Salmonella in order to compare the levels of discrimination of probes. DNA sequence divergence and rearrangements were analyzed in and around the rfa, fim and umuDC loci, and around insertion sites of the Salmonella-specific DNA insertion element, IS200. The S. enteritidis isolates showed a high degree of genome homogeneity. Chromosomal genetic loci exhibited characteristic DNA sequence divergence between subspecies of Salmonella, but no intraserovar divergence or difference with the subspecies I type strain was observed for S. enteritidis. The locus umuDC was not found in S. enteritidis. S. enteritidis contains a conserved and a variable site of insertion of insertion sequence IS200 and the analysis of DNA rearrangements around the second of these sites showed that three distinct evolutionary lines or races exist within pandemic isolates associated with human gasteroenteritis. IS200 profiles of a range of U.K. isolates of the epidemic phage type PT4 showed that all belonged to a single clonal line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号